• 제목/요약/키워드: High-Precision Control

검색결과 1,290건 처리시간 0.031초

고속 정밀 로봇 제어를 위한 실시간 중앙 집중식 소프트 모션 제어 시스템 (Real-Time Centralized Soft Motion Control System for High Speed and Precision Robot Control)

  • 정일균;김정훈
    • 대한임베디드공학회논문지
    • /
    • 제8권6호
    • /
    • pp.295-301
    • /
    • 2013
  • In this paper, we propose a real-time centralized soft motion control system for high speed and precision robot control. The system engages EtherCAT as high speed industrial motion network to enable force based motion control in real-time and is composed of software-based master controller with PC and slave interface modules. Hard real-time control capacity is essential for high speed and precision robot control. To implement soft based real time control, The soft based master controller is designed using a real time kernel (RTX) and EtherCAT network, and servo processes are located in the master controller for centralized motion control. In the proposed system, slave interface modules just collect and transfer all sensor information of robot to the master controller via the EtherCAT network. It is proven by experimental results that the proposed soft motion control system has real time controllability enough to apply for various robot control systems.

초정밀서보기구의 제어성능 평가(II) (Control performance evaluation of ultra precision servo apparatus(II))

  • 김재열;김영석;곽이구;마상동;한재호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.617-620
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. Is such technology has been rapidly developed, this field needs the positioning accuracy as high as submicron. It is expected that the accuracy of 10nm and 1nm is required in precision work and ultra precision work field, respectively by the beginning of 2000s. High speed and low vibration are also needed. This work deals with the design method and control system of Ultra precision positioning apparatus. We will examine the control performance and stability before manufacturing the real apparatus by using MATLAB SIMULINK based or pre-designed controller and system modeling.

  • PDF

Piezo Actuator를 이용한 초정밀 위치결정기구의 Computer Simulation 및 제어 성능평가 (Computer Simulation and Control performance evaluation of Ultra Precision Positioning Apparatus using Piezo Actuator)

  • 김재열;김영석;곽이구;한재호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.118-122
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. For composition of this technology, the development of system with high speed and high resolution is needed. At start point and end position vibration must be repressed on this system for composition of position control. This vibration is arisen nose, is increased setting time, is reduced accuracy. Especially, repressed for the lead with high speed. The small actuator with high speed and high resolution is need to repression against this residual vibration. This actuator is, for example, piezo actuator, piezoelectric material that converting from electronic signal to mechanical force is adequate material, beacause of control of control to position and force. In this study, piezo electric material is used to actuator, ultra precision positioning apparatus with stage of hinge structure is designed, simulation is performed, control performance is tested by producing apparatus. For easy usage and stability in industrial field, we perform to simulation and to position control test by digital PID controller.

  • PDF

DC Servo Motor를 이용한 초정밀 위치결정기구의 컴퓨터 시뮬레이션 및 제어성능 평가 (Computer Simulation and Control performance evaluation of Ultra Precision Positioning Apparatus using DC Servo Motor)

  • 박기형;김재열;윤성운;이규태;곽이구;송인석;한재호
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.164-169
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. As such technology has been rapidly developed, this field needs the positioning accuracy as high as submicron. It is expected that the accuracy of 10nm and 1nm is required in precision work and ultra precision work field, respectively by the beginning of 2000s. High speed and low vibration are also needed. This work deals with the design method and control system of Ultra precision positioning apparatus. Control performance and stability analysis were performed in advance by modeling and designing the controller with Simulink.

  • PDF

초정밀 선형 모터 시스템의 적응형 힘리플 보상과 정밀 트랙킹 제어 (Adaptive Force Ripple Compensation and Precision Tracking Control of High Precision Linear Motor System)

  • 최영만;권대갑;이문구
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.51-60
    • /
    • 2005
  • This paper describes a robust control scheme for high-speed and long stroke scanning motion of high precision linear motor system consisting of linear motor, air bearing guide and position measurement system using heterodyne interferometer. Nowadays, semiconductor process and inspection of wafer or LCD need high speed and long travel length for their high throughput and extremely small velocity fluctuations or tracking errors. In order to satisfy these conditions, linear motor system are widely used because they have large thrust force and do not need motion conversion mechanisms such as ball screw, rack & pinion or capstan with which the system are burdened. However linear motors have a problem called force ripple. Force ripple deteriorates the tracking performances and makes periodic position errors. So, force ripple must be compensated. To maximize the tracking performance of linear motor system, we propose the control scheme which is composed of a robust control method, Time Delay Controller (TDC) and a feedforward control method, Zero Phase Error Tracking Control (ZPETC) for accurate tracking a given trajectory and an adaptive force ripple compensation (AFC) algorithm fur estimating and compensating force ripple. The adaptive ripple compensation is continuously refined on the basis of tracking error. Computer simulation results based on modeled parameters verify the effectiveness of the proposed control scheme for high-speed, long stroke and high precision scanning motion and show that the proposed control scheme can achieve a sup error tracking performance in comparison to conventional TDC control.

반복 제어를 이용한 접촉력 제어 (Repetitive Control of Contact Force)

  • 전도영;정일용
    • 한국정밀공학회지
    • /
    • 제13권4호
    • /
    • pp.122-128
    • /
    • 1996
  • In high speed and high precision assembly systems such as a surface mounting device and robotend effector, the contact force control is required. As the operation repeats, the repetitive control is applied to reduce the periodic contact force errors. Since high order unmodelled dynamics are easily excited in contact force control, a Q filter was introduced and its robust stability was analyzed. Simulation and Experimental results show the effectiveness of the algorithm.

  • PDF