• Title/Summary/Keyword: High-Level Radioactive Waste Repository

Search Result 130, Processing Time 0.024 seconds

Draft List and Relative Importance of Principal Processes in the Geosphere to be Considered for the Radiological Safety Assessment of the Domestic Geological Disposal Facility through Analyzing FEPs for KBS-3 Type Disposal Repository of High-level Radioactive Waste(HLW) (KBS-3 방식 고준위방폐물 심층처분장 FEP 분석을 통한 국내 사용후핵연료 심층처분시설 방사선학적 안전성 평가용 지권영역 주요 프로세스 항목 및 상대적 중요도 도출)

  • Sukhoon Kim;Donghyun Lee;Dong-Keuk Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.33-44
    • /
    • 2023
  • The deep geological repository of high-level radioactive waste shall be designed to meet the safety objective set in the form of radiation dose or corresponding risk to protect human and the environment from radiation exposure. Engineering feasibility and conformity with the safety objective of the facility conceptual design can be demonstrated by comparing the assessment result using the computational model for scenario(s) describing the radionuclide release and transport from repository to biosphere system. In this study, as the preliminary study for developing the high-level radioactive waste disposal facility in Korea, we reviewed and analyzed the entire list of FEPs and how to handle each FEP from a general point of view, which are selected for the geosphere region in the radiological safety assessment performed for the license application of the KBS-3 type deep geological repository in Finland and Sweden. In Finland, five FEPs (i.e., stress redistribution, creep, stress redistribution, erosion and sedimentation in fractures, methane hydrate formation, and salt exclusion) were excluded or ignored in the radionuclide release and transport assessment. And, in Sweden, six FEPs (i.e., creep, surface weathering and erosion, erosion/sedimentation in fractures, methane hydrate formation, radiation effects (rock and grout), and earth current) were not considered for all time frames and earthquake out of a total of 25 FEPs for the geosphere. Based on these results, an FEP list (draft) for the geosphere was derived, and the relative importance of each item was evaluated for conducting the radiological safety assessment of the domestic deep geological disposal facility. Since most of information on the disposal facility in Korea has not been determined as of now, it is judged that all FEP items presented in Table 3 should be considered for the radiological safety assessment, and the relative importance derived from this study can be used in determining whether to apply each item in the future.

Current Status of the Numerical Models for the Analysis of Coupled Thermal-Hydrological-Mechanical Behavior of the Engineered Barrier System in a High-level Waste Repository (고준위폐기물처분장 공학적방벽시스템의 열-수리-역학적 복합거동 해석 모델 개발 현황)

  • Cho, Won-Jin;Kim, Jin Seop;Lee, Changsoo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.281-294
    • /
    • 2012
  • The current status of the computer codes for the analysis of coupled thermal-hydrological-mechanical behavior occurred in a high-level waste repository was investigated. Based on the reported results on the comparison between the predictions using the computer codes and the experimental data from the in-situ tests, the reliability of the existing computer codes was analyzed. The presented codes simulated considerably well the coupled thermal-hydrological-mechanical behavior in the near-field rock of the repository without buffer, but the predictions for the engineered barrier system of the repository located at saturated hard rock were not satisfactory. To apply the current thermal-hydrological-mechanical models to the assessment of the performance of engineered barrier system, a major improvement on the mathematical models which analyze the distribution of water content and total pressure in the buffer is required.

Engineering-scale Test for Validating the T-H-M Behavior of a HLW Repository: Experimental Set-up

  • Lee, Jae-Owan;Baik, Min-Hoon;Cho, Won-Jin
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.194-198
    • /
    • 2004
  • The thermo-hydro-mechanical (T-H-M) process is one of major issues in the performance assessment of a high level waste (HLW) repository. An engineering-scale test was planned and its experimental set-up has being installed, to validate the T-H-M behavior in the buffer of a reference disposal system. The experimental set-up consists of 4 major components: the confining cylinder with its hydration water tank, the bentonite block, the heating system, and the sensors and instruments. The monitoring and data acquisition system is employed to control the heater to maintain the temperature of $95^{\circ}C$ at the interface of the heater and bentonite blocks and to collect signals from sensors and instruments installed in the bentonite blocks.

  • PDF

Establishing the Concept of Buffer for a High-level Radioactive Waste Repository: An Approach (고준위폐기물처분장의 완충재 개념 도출: 접근방안)

  • Lee, Jae Owan;Lee, Minsoo;Choi, Heuijoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.283-293
    • /
    • 2015
  • The buffer is a key component of the engineered barrier system in a high-level radioactive waste (HLW) repository. The present study reviewed the requirements and functional criteria of the buffer reported in literature, and also based on the results, proposed an approach to establish a buffer concept which is applicable to an HLW repository in Korea. The hydraulic conductivity, radionuclide-retarding capacity (equilibrium distribution coefficient and diffusion coefficient), swelling pressure, thermal conductivity, mechanical properties, organic carbon content, and illitization rate were considered as major technical parameters for the functional criteria of the buffer. Domestic bentonite (Ca-bentonite) and, as an alternative, MX-80 (Na-bentonite) were proposed for the buffer of an HLW repository in Korea. The technical specifications for those proposed bentonites were set to parameter values that conservatively satisfy Korea's functional criteria for the Ca-bentonite and Swedish criteria for the Na-bentonite. The thickness of the buffer was determined by evaluating the means of shear behavior, radionuclide release, and heat conduction, which resulted in the proper buffer thickness of 0.25 to 0.5 m. However, the final thickness of the buffer should be determined by considering coupled thermal-hydraulic-mechanical evaluation and economics and engineering aspects as well.

Managing the Back-end of the Nuclear Fuel Cycle: Lessons for New and Emerging Nuclear Power Users From the United States, South Korea and Taiwan

  • Newman, Andrew
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.435-446
    • /
    • 2021
  • This article examines the consequences of a significant spent fuel management decision or event in the United States, South Korea and Taiwan. For the United States, it is the financial impact of the Department of Energy's inability to take possession of spent fuel from commercial nuclear power companies beginning in 1998 as directed by Congress. For South Korea, it is the potential financial and socioeconomic impact of the successful construction, licensing and operation of a low and intermediate level waste disposal facility on the siting of a spent fuel/high level waste repository. For Taiwan, it is the operational impact of the Kuosheng 1 reactor running out of space in its spent fuel pool. From these, it draws six broad lessons other countries new to, or preparing for, nuclear energy production might take from these experiences. These include conservative planning, treating the back-end of the fuel cycle holistically and building trust through a step-by-step approach to waste disposal.

A Deterministic Safety Assessment of a Pyro-processed Waste Repository (A-KRS 처분 시스템 결정론적 안전성 평가)

  • Lee, Youn-Myoung;Jeong, Jongtae;Choi, Jongwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 2012
  • A GoldSim template program for a safety assessment of a hybrid-typed repository system, called "A-KRS," in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been deterministically assessed with 5 various normal and abnormal scenarios associated with nuclide release and transport in and around the repository. Dose exposure rates to the farming exposure group have been evaluated in accordance with all the scenarios and then compared among other.

A Probabilistic Safety Assessment of a Pyro-processed Waste Repository (A-KRS 처분 시스템 확률론적 안전성 평가)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.263-272
    • /
    • 2012
  • A GoldSim template program for a safety assessment of a hybrid-typed repository system, called A-KRS, in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been probabilistically assessed with 9 selected input parameters, each of which has its own statistical distribution for a normal release and transport scenario associated with nuclide release and transport in and around the repository. Probabilistic dose exposure rates to the farming exposure group have been evaluated. A sensitivity of 9 selected parameters to the result has also been investigated to see which parameter is more sensitive and important to the exposure rates.

Post Closure Long Term Safety of an Initial Container Failure Scenario for a Potential HLW Repository (고준위 방사성폐기물 처분장에서 초기 용기 파손 시나리오의 장기 방사선적 안전성 평가)

  • 황용수;서은진;이연명;강철형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.229-232
    • /
    • 2003
  • A waste container, one of the key compartments in a multi-barrier system for a potential high level radioactive waste (HLW) repository in Korea ensures the mechanical stability against the lithostatic pressure of a deep geologic strata and the swelling pressure of the bentonite buffer. Also, it prohibits potential release of radionuclides for a certain period of time. before it is corroded by impurities. Even though the materials of a waste container is carefully chosen and all manufacturing processes are under heavy quality assurance, there might be a slight chance of intial defects in a waste container. Also, during the deposition of a waste container in a repository, there might be a chance of an incident affecting the integrity of a waste container. In this study, the FEP's and the scenarios over radiological impact of a potential initial waste container defect was developed. Then the total system performance assessment on this initial waste container failure (ICF) scenario was carried out by the MASCOT-K, one of the probabilistic safety assessment tools KAERI has developed. Results show that for the data set studied in this paper, the annual individual dose by the ICF scenario well meets the KINS regulation.

  • PDF

Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository (복합 처분환경 모사조건에서의 KURT 화강암의 역학적 물성 변화 평가)

  • Park, Seunghun;Kim, Jin-Seop;Kim, Geon Young;Kwon, Sangki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.501-518
    • /
    • 2019
  • The rock properties measured under in-situ geological condition can be used to increase the reliability in numerical simulations with regard to the long-term performance of a high-level waste repository. In this study, the change in mechanical properties of KURT (Korea atomic energy research institute Underground Research Tunnel) granite was evaluated under the simulated THM (Thermo-Hydro-Mechanical) coupled condition due to a deep geological formation in the disposal repository. The rock properties such as uniaxial compression strength, indirect tensile strength, elastic modulus and Poisson's ratio were measured under the coupled test conditions (M, HM, TM, THM). It was found that the mechanical properties of KURT granite is more susceptible to the change in saturation rather than temperature within the test condition of this study. The changes in uniaxial compression strength and indirect tensile strength from the rock samples of dried or saturated conditions showed the maximum relative error of about 20% and 13% respectively under the constant temperature condition. Therefore, it is necessary to use the material properties of rock measured under the coupled THM condition as input parameters for the numerical simulation of long-term performance assessment of a disposal repository

Thermal Properties of Buffer Material for a High-Level Waste Repository Considering Temperature Variation (고준위폐기물 처분시설 완충재의 온도변화에 따른 열물성)

  • Yoon, Seok;Kim, Geon-Young;Park, Tae-Jin;Lee, Jae-Kwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.25-31
    • /
    • 2017
  • The buffer is one of the major components of an engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW). As the buffer is located between a disposal canister and host rock, it is indispensable to assure the disposal safety of high-level radioactive waste. It can restrain the release of radionuclide and protect the canister from the inflow of groundwater. Since high quantity of heat from a disposal canister is released to the surrounding buffer, thermal properties of the buffer are very important parameters for the analysis of the entire disposal safety. Especially, temperature criteria of the compacted bentonite buffer can affect the design of HLW repository facility. Therefore, this paper investigated thermal properties for the Kyungju compacted bentonite buffer which is the only bentonite produced in South Korea. Hot wire method and dual probe method were used to measure thermal conductivity and specific heat capacity of the compacted bentonite buffer according to the temperature variation. Thermal conductivity and specific heat capacity were decreased dramatically when temperature variation was between $22^{\circ}C{\sim}110^{\circ}C$ as degree of saturation decreased according to the temperature variation. However, there was little variation under the high temperature condition at $110^{\circ}C{\sim}150^{\circ}C$.