• 제목/요약/키워드: High-Energy milling

검색결과 306건 처리시간 0.032초

High Energy Milling으로 제조한 Ba 페라이트의 특성 (PROPERTIES OF Ba-FERRITES PREPARED BY HIGH ENERGY MILLING)

  • 남중희;김민상;김효태
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2002년도 동계연구발표회 논문개요집
    • /
    • pp.116-117
    • /
    • 2002
  • High energy mi]ling은 mechanical alloying을 일컫는 분말 제조 공정으로서 금속 뿐 아니라 세라믹스 분말 합성에도 많이 응용되고 있으며, 입자크기의 나노화와 일반적인 세라믹 분말의 특성을 개질할 수 있다는 특징을 갖고 있어서 다양한 연구 결과가 보고되고 있다[1-2]. Ba 및 Sr 페라이트와 같은 육방정 페라이트는 보자력(high coercivity)이 높은 특성을 가지므로 영구자석용, 기록재료용 등으로 광범위하게 사용되어온 재료이다. 이와 같은 높은 보자력을 유지하기 위해서는 입자크기가 단자구 입경(<1 $\mu\textrm{m}$) 보다 작아야 하기 때문에, 초미립자 합성에 관한 많은 연구가 진행되어 왔다[3-4]. (중략)

  • PDF

고에너지 볼 밀링을 이용한 Y-산화물 분산 Fe-기초내열합금 분말의 합성 및 미세조직 특성 (Synthesis and Microstructure of Fe-Base Superalloy Powders with Y-Oxide Dispersion by High Energy Ball Milling)

  • 임다미;박종관;오승탁
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.386-390
    • /
    • 2015
  • Fe-base superalloy powders with $Y_2O_3$ dispersion were prepared by high energy ball milling, followed by spark plasma sintering for consolidation. High-purity elemental powders with different Fe powder sizes of 24 and 50 mm were used for the preparation of $Fe-20Cr-4.5Al-0.5Ti-O.5Y_2O_3$ powder mixtures (wt%). The milling process of the powders was carried out in a horizontal rotary ball mill using a stainless steel vial and balls. The milling times of 1 to 5 h by constant operation (350 rpm, ball-to-powder ratio of 30:1 in weight) or cycle operation (1300 rpm for 4 min and 900 rpm for 1 min, 15:1) were applied. Microstructural observation revealed that the crystalline size of Fe decreased with an increase in milling time by cyclic operation and was about 15 nm after 3 h, forming a FeCr alloy phase. The cyclic operation had an advantage over constant milling in that a smaller-agglomerated structure was obtained. The milled powders were sintered at $1100^{\circ}C$ for 30 min in vacuum. With an increase in milling time, the sintered specimen showed a more homogeneous microstructure. In addition, a homogenous distribution of Y-compound particles in the grain boundary was confirmed by EDX analysis.

밀링 에너지 변화에 따른 TiC 분말의 미세화 거동에 관한 정량적 연구 (Quantitative Study on the Refinement Behaviors of TiC Powders Produced by Mechanical Milling Under Different Impact Energy)

  • 홍성모;박은광;김경열;박진주;이민구;이창규;이진규;권영순
    • 한국분말재료학회지
    • /
    • 제19권1호
    • /
    • pp.32-39
    • /
    • 2012
  • This study investigated refinement behaviors of TiC powders produced under different impact energy conditions using a mechanical milling process. The initial coarse TiC powders with an average diameter of 9.3 ${\mu}m$ were milled for 5, 20, 60 and 120 mins through the conventional low energy mechanical milling (LEMM, 22G) and specially designed high energy mechanical milling (HEMM, 65G). TiC powders with angular shape became spherical one and their sizes decreased as the milling time increased, irrespective of milling energy. Based upon the FE-SEM and BET results of milled powders, it was found initial coarse TiC powders readily became much finer near 100 nm within 60 min under HEMM, while their sizes were over 200 nm under LEMM, despite the long milling time of up to 120 min. Particularly, ultra-fine TiC powders with an average diameter of 77 nm were fabricated within 60 min in the presence of toluene under HEMM.

Spark Plasma Sintering of Stainless Steel Powders Fabricated by High Energy Ball Milling

  • Chang, Si Young;Oh, Sung-Tag;Suk, Myung-Jin;Hong, Chan Seok
    • 한국분말재료학회지
    • /
    • 제21권2호
    • /
    • pp.97-101
    • /
    • 2014
  • The 304 stainless steel powders were prepared by high energy ball milling and subsequently sintered by spark plasma sintering, and the microstructural characteristics and micro-hardness were investigated. The initial size of the irregular shaped 304 stainless steel powders was approximately 42 ${\mu}m$. After high energy ball milling at 800 rpm for 5h, the powders became spherical with a size of approximately 2 ${\mu}m$, and without formation of reaction compounds. From TEM analysis, it was confirmed that the as-milled powders consisted of the aggregates of the nano-sized particles. As the sintering temperature increased from 1073K to 1573K, the relative density and micro-hardness of sintered sample increased. The sample sintered at 1573K showed the highest relative density of approximately 95% and a micro-hardness of 550 Hv.

고에너지 볼밀링에 의해 제조된 Gd2O3-doped CeO2 나노분말의 소결 거동에 관한 연구 (Sintering Behavior of Nano-sized Gd2O3-doped CeO2 Powder Prepared by A High Energy Ball Milling)

  • 류성수;김형태
    • 한국분말재료학회지
    • /
    • 제15권4호
    • /
    • pp.302-307
    • /
    • 2008
  • $Gd_2O_3$-doped $CeO_2$(GDC) solid solutions have been considered as a promising materials for electrolytes in intermediate-temperature solid oxide fuel cells. In this study, the nano-sized GDC powder with average panicle size of 69nm was prepared by a high energy ball milling process and its sintering behavior was investigated. Heat-treatment at $1200^{\circ}C$ of nano-sized GDC powder mixture led to GDC solid-solution. The enhanced densification over 96% of relative density was obtained after sintering at $1300^{\circ}C$ for 2h. It was found that the sinterability of GDC powder could be significantly improved by the introduction of a high energy ball milling process.

Influence of High-energy Milling and Sintering Cycle on Obtaining of TiAl from Elemental Ti and Al Powders

  • Esteban, P.G.;Gordo, E.;Ruiz-Navas, E.M.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.727-728
    • /
    • 2006
  • The present work studies the influence of high-energy milling (HEM) and sintering cycle of Ti and Al powders on the obtainment of TiAl. This study shows that HEM modifies the diffusion processes during the sintering stage. The samples were obtained by cold uniaxial and isostatic pressing, pre-sintered at different temperatures, and heated up to the sintering temperature. This study also shows the effect of powder additions processed by HEM on the sintering behavior of elemental Ti and Al powders.

  • PDF

Mechanical Milling of Lithium with Metal Oxide and its Reactivity with Gases

  • Yokoi, Tomomichi;Yamasue, Eiji;Okumura, Hideyuki;Ishihara, Keiichi N.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.959-960
    • /
    • 2006
  • Li reacts with $N_2$ at room temperature. In order to activate Li, the mechanical milling of Li with stable metal oxide, namely, $Al_2O_3$ and MgO, using a high energy vibrating ball mill was performed. In the case of Li-MgO system, it reacts with $N_2$, but hardly reacts with $O_2$. The reaction with $N_2$ generally produces $Li_3N$, while for some vigorous reactions the $Mg_3N_2$ is produced as the major phases. In the case of $Li-Al_2O_3$ system, reactivities with both $N_2$ and $O_2$ are high. The difference is explained in terms of the reaction mechanism and the Li state.

  • PDF

고 에너지 볼 밀링을 통한 Co-ferrite 제조 및 열적 환원에 대한 연구 (A Study on the Synthesis of Co-ferrite by High-energy Ball Milling and Thermal Reduction Characteristics)

  • 조미선;김우진;김창희;강경수;김영호;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.309-316
    • /
    • 2006
  • Co-ferrite was synthesized by HEBM (High Energy Ball Milling) with a stoichiometric (Co/Fe=0.5/2.5) mixture of CoO and $Fe_2O_3$ powders. The effect of milling time on the phase transformation of the mixture was investigated by XRD. Mono-phase solid solution of Co-ferrite, which was milled for 4 h and then calcined at $900^{\circ}C$ in the Ar atmosphere, was confirmed by XRD analysis. The composition and thermal reduction behavior of Co-ferrite were analyzed by TGA and XRF. As a result, oxygen deficient Co-ferrite was synthesized by HEBM and the weight decrease of the Co-ferrite, which was oxidized at $600^{\circ}C$ for 10h by $H_2O$ vapor, was 2.41 wt% during thermal reduction at $1300^{\circ}C$.

기계적 합금화 투입에너지 계산에 의한 이원합금계의 상변태 시간 예측 (Prediction the Phase Transformation Time of Binary Alloy System by calculating the Input Energy of Mechanical Alloying)

  • 박동규;안인섭
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.107-111
    • /
    • 2019
  • The activation energy to create a phase transformation or for the reaction to move to the next stage in the milling process can be calculated from the slop of the DSC plot, obtained at the various heating rates for mechanically activated Al-Ni alloy systems by using Kissinger's equation. The mechanically activated material has been called "the driven material" as it creates new phases or intermetallic compounds of AlNi in Al-Ni alloy systems. The reaction time for phase transformation by milling can be calculated using the activation energy obtained from the above mentioned method and from the real required energy. The real required energy (activation energy) could be calculated by subtracting the loss energy from the total input energy (calculated input energy from electric motor). The loss energy and real required energy divided by the reaction time are considered the "metabolic energy" and "the effective input energy", respectively. The milling time for phase transformation at other Al-Co alloy systems from the calculated data of Al-Ni systems can be predicted accordingly.

Synthesis of Nano-Sized Y3Al5O12:Ce3+ Phosphors Prepared by High Energy Beads Milling Process and Their Luminescence Properties

  • Song, Hee-Jo;Kim, Dong-Hoe;Park, Jong-Hoon;Han, Byung-Suh;Hong, Kug-Sun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.386-386
    • /
    • 2012
  • For white light emitting diode (LED) applications, it has been reported that Y3Al5O12:Ce3+ (YAG:Ce) in nano-sized phosphor performs better than it does in micro-sized particles. This is because nano-sized YAG:Ce can reduce internal light scattering when coated onto a blue LED surface. Recently, there have been many reports on the synthesis of nano-sized YAG particles using bottom-up method, such as co-precipitation method, sol-gel process, hydrothermal method, solvothermal method, and glycothermal method. However, there has been no report using top-down method. Top-down method has advantages than bottom-up method, such as large scale production and easy control of doping concentration and particle size. Therefore, in this study, nano-sized YAG:Ce phosphors were synthesized by a high energy beads milling process with varying beads size, milling time and milling steps. The beads milling process was performed by Laboratory Mill MINICER with ZrO2 beads. The phase identity and morphology of nano-sized YAG:Ce were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FESEM), respectively. By controlling beads size, milling time and milling steps, we synthesized a size-tunable and uniform nano-sized YAG:Ce phosphors which average diameters were 100, 85 and 40 nm, respectively. After milling, there was no impurity and all of the peaks were in good agreement with YAG (JCPDS No. 33-0040). Luminescence and quantum efficiency (QE) of nano-sized YAG:Ce phosphors were measured by fluorescence spectrometer and QE measuring instrument, respectively. The synthesized YAG:Ce absorbed light efficiently in the visible region of 400-500 nm, and showed single broadband emission peaked at 550 nm with 50% of QE. As a result, by considering above results, high energy beads milling process could be a facile and reproducible synthesis method for nano-sized YAG:Ce phosphors.

  • PDF