• 제목/요약/키워드: High-Efficiency Motors

검색결과 274건 처리시간 0.028초

전기기기 코아용 전기강판 소재의 자기적 특성 (Magnetic Properties of Electrical Steel Material for Electric Machines Core)

  • 하경호;차상윤;김재관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.881-883
    • /
    • 2004
  • The high efficiency for motors has been continuously required for energy saving. The iron losses occurring in motor cores account for high percentage in the energy losses of motors, so that electrical steels with lower iron losses have been desired as core materials. It is necessary to understand the basic charecteristic of the electrical steel to design motors and establish manufacturing process for the loss reduction. Therefore, this paper deal with the basic characteristic related with the magnetic properties of electrical steels and descibes the cause of core loss in electrical machines.

  • PDF

고속회전기 적용을 위한 매입형 영구자석 전동기의 설계 및 검증 (Design and Experimental Verification of an Interior Permanent Magnet Motor for a High-speed Machine)

  • 김성일;홍정표;이우택;최진철;권혁률;박정희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.857_858
    • /
    • 2009
  • On account of small size and light weight, a high-speed machine is regarded as a key technology for many future applications of drive systems. In high-speed applications, permanent magnet (PM) synchronous motors have a number of merits such as high efficiency and high power density. Accordingly, they are suitable for driving the air-blower of a fuel cell electric vehicle (FCEV) where space and energy savings are critical. Particularly, a surface-mounted PM motor of them is mainly used as a high-speed machine. However, the motor has a fatal flaw owing to a retaining can to maintain the mechanical integrity of a rotor assembly. The can results in the increase of magnetic air-gap length in the surface-mounted PM motor. Thus, in this paper, an interior PM motor is designed in order to drive the air-blower of FCEV instead of the surface-mounted PM motor, and the experimental results of two models are compared to verify the capability of the interior PM motor for a high-speed machine.

  • PDF

Air-Barrier Width Prediction of Interior Permanent Magnet Motor for Electric Vehicle Considering Fatigue Failure by Centrifugal Force

  • Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.952-957
    • /
    • 2015
  • Recently, the interior permanent magnet (IPM) motors for electric vehicle (EV) traction motor are being extensively researched because of its high energy density and high efficiency. The traction motor for EV requires high power and high efficiency at the wide driving region. Therefore, it is essential to fully consider the characteristics of the motor from low speed to high-speed driving regions. Especially, when the motor is driven at high speed, a significant centrifugal force is applied to the rotor. Thus, the rotor must be stably structured and be fully endured at the critical speed. In this paper, aims to examine the characteristics of the IPM motor by adjusting the width of air-barrier according to the permanent magnet position which is critical in designing an IPM motor for EV traction motors and to conduct a centrifugal force analysis for grasping mechanical safety.

초음파 모터 구동용 발진회로의 설계 및 제작 (Design and fabrication of driving generator for ultrasonic motors)

  • 심성훈;백동수;윤석진;김현재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.129-131
    • /
    • 1999
  • Driving generator of USMs(ultrasonic motors) with low noise, high efficiency was designed and fabricated. It was focused on merits such as size-reduction, thermal resistance, To control revolution speed, input frequency was varied. Output of generator had frequency range of 39.1 ∼ 43.5 MHz and voltage of 120 V. USM with resonant frequency 40.3 kHz exhibited a maximum torque of 2.5 kg $.$ cm and a maximum revolution speed of about 130 rpm.

  • PDF

고속으로 운전되는 영구자석형 동기전동기의 철손 및 풍손 해석 (Analysis on the Core Loss and Windage Loss in Permanent Magnet Synchronous Motor for High-Speed Application)

  • 장석명;고경진;조한욱
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권10호
    • /
    • pp.511-520
    • /
    • 2006
  • Recently, more attention has been paid to the development of high-speed permanent magnet (PM) synchronous motors, since they are conductive to high efficiency, high power density, small size, and low weight. In high-speed PM machines, core loss and windage loss form a larger proportion of the total losses than usual in conventional mid- or low speed machines. This article deals with the analysis on the core loss and windage loss in PM synchronous motor for high-speed application. Using the data information from a manufacturer and non-linear curve fitting, this paper investigates the magnetic behavior and its core losses in the stator core using the electrical steels. And, the windage loss is calculated according to the variation of the rotational speed, motor inner pressure and temperature.

MODELING OF IRON LOSSES IN PERMANENT MAGNET SYNCHRONOUS MOTORS WITH FIELD-WEAKENING CAPABILITY FOR ELECTRIC VEHICLES

  • Chin, Y.K.;Soulard, J.
    • International Journal of Automotive Technology
    • /
    • 제4권2호
    • /
    • pp.87-94
    • /
    • 2003
  • Recent advancements of permanent magnet (PM) materials and solid-state devices have contributed to a substantial performance improvement of permanent magnet machines. Owing to the rare-earth PMs, these motors have higher efficiency, power factor, output power per mass and volume, and better dynamic performance than induction motors without sacrificing reliability. Not surprisingly, they are continuously receiving serious considerations for a variety of automotive and propulsion applications. An electric vehicle (EV) requires a high-effficient propulsion system having a wide operating range and a capability of generating a high peak torque for short durations. The improvement of torque-speed performance for these systems is consequently very important, and researches in various aspects are therefore being actively pursued. A great emphasis has been placed on the efficiency and optimal utilization of PM machines. This requires attention to many aspects related to the machine design and overall performance. In this respect, the prediction of iron losses is particularly indispensable and challenging, especially for drives with a deep field-weakening range. The objective of this paper is to present iron loss estimations of a PM motor over a wide speed range. As aforementioned, in EV applications core losses can be significant during high-speed operation and it is imperative to evaluate these losses accurately and take them into consideration during the motor design stage. In this investigation, the losses are predicted by using an analytical model and a 2D time-stepped finite element method (FEM). The results from different analytical approaches are compared with the FEM computations. The validity of each model is then evaluated by these comparisons.

High Performance Switched Reluctance Motor Drive for Automobiles using C-dump Converters

  • Song Sang-Hoon;Yoon Yong-Ho;Lee Tae-Won;Kim Yeun-Chung;Won Chung-Yuen
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.992-996
    • /
    • 2004
  • Small electric motors in an automobile perform various tasks such as engine cooling, pumping, and in heating, ventilating, and air-conditioning (HVAC) system. At present, most of dc motors are supplied by 12V or 24V batteries. However, DC motors surfer from lack of efficiency, low life cycles and unreliability. Therefore, there is a growing interest in substituting DC motors for advanced AC motors including switched reluctance motors. Although there are several other forms SRM converters, they are either unsatisfactory to the control performance or unsuitable for the 12V-battery powered 3-phase SRM drives. Taking into account the requirement for effective operation and simplicity structure of converter in the limited internal environment of automobiles, the author inclines toward selecting the modified C-dump converter as well as the energy efficient C-dump converter. This is so that more economical and efficient converter topology in automobile industries can be utilized. This paper describes the foundation for the design and development of a 12V-250W-3000rpm SRM drives for automobiles. Furthermore, complete circuit, computer simulation and experiment results are presented to verify the performance of the C-dump converters.

  • PDF

Design and Evaluation of a Multi-layer Interior PM Synchronous Motor for High-Speed Drive Applications

  • Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.405-412
    • /
    • 2016
  • In general, surface mounted PM synchronous motors (SPMSMs) are mainly adopted as a driving motor for high-speed applications, because they have high efficiency and high power density. However, the SPMSMs have some weak points such as the increase of magnetic reluctance and additional losses as a consequence of using a non-magnetic sleeve. Especially, the magneto-motive force (MMF) in the air-gap of the SPMSMs is weakened due to the magnetically increased resistance. For that reason, a large amount of PM is consumed to meet the required MMF. Nevertheless, it cannot help using the sleeve in order to maintain the mechanical integrity of a rotor assembly in high-speed rotation. Thus, in this paper, a multi-layer interior PM synchronous motor (IPMSM) not using the sleeve is presented and designed as an alternative of a SPMSM. Both motors are evaluated by test results based on a variety of characteristics required for an air blower system of a fuel cell electric vehicle.

초고속 및 대용량 전동기 구동을 위한 PWM 인버터 병렬 운전에 관한 연구 (A Study on Parallel Operation of PWM Inverters for High Speed and High Power Motor Drive System)

  • 조운관;임정식;설승기
    • 전력전자학회논문지
    • /
    • 제15권3호
    • /
    • pp.244-251
    • /
    • 2010
  • 최근 초고속 전동기는 시스템의 크기를 줄이고 에너지 변환 효율을 높이고자 산업계에서 많이 쓰이고 있다. 그러나 초고속 전동기의 경우 상 인덕턴스($L_s$)가 기존의 저속 모터의 상 인덕턴스에 비해 매우 작기 때문에 PWM에 의한 전류 맥동이 커지게 되고, 이로 인해 철손이 기존의 저속 전동기에 비해 커지는 문제점이 존재한다. 본 논문에서는 9개의 결합 인덕터를 이용하여 3개의 PWM 인버터 병렬 운전 방법을 제안한다. 제안된 방법은 기존의 하나의 인버터를 사용할 때에 비해 전류 맥동은 크게 줄일 수 있으며, 인덕터에 의한 전압 강하는 방지할 수 있다. 본 논문에서는 제안한 시스템의 출력 전압을 수식을 통해 분석한 후, 실험 결과를 통해 유효성을 검증하였다.