• Title/Summary/Keyword: High-Ductile Mortar

Search Result 24, Processing Time 0.015 seconds

Repair and Strengthening Method Using Near Surface Mounted FRP Rods and Overlay (FRP Rod를 이용한 표면매립 및 단면 확대 복합 보수$\cdot$보강 공법)

  • Hwang Gum-sic;Park Chin-ki;Won Jong-pil
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.66-74
    • /
    • 2005
  • This paper reports new repair and strengthening mathod using improved material. This mathod have two type according to covering thickness of reinforcement. One type is near surface mounted FRP rod. Anther type is overay. Fiber Reinforced Plastic (FRP) materials has become very popular in recent years. FRP material used to rehabilitate many types of structures with superior characteristics such as high strength and stiffness and corrosion resistance. This strengthening mathod were used FRP rod which have better bond and shear strangth than current FRP rod. Development of FRP rod due to 3-D winding system. In addition, Ductile hybrid FRP has a certain plastic deformation and an elongation greater than 3% at maximum load is usually required for steel reinforcement in concrete structures. Moerover this mathod can be effective repair of base concrete by sprayed polymer mortar.

New Technique of Earthquake Resistant Performance of Reinforced Concrete Infilled Shear Wall using New Materials and Advanced Detailing (신소재 및 성능개선 디테일을 활용한 철근콘크리트 골조면내 전단벽의 내진성능 개선기술)

  • Ha, Gee-Joo;Shin, Jong-Hak;Kim, Yun-Yong;Yang, Seung-Hyeok;Hong, Kun-Ho;Kim, Jeong-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.202-205
    • /
    • 2006
  • Three reinforced concrete shear wall and infilled shear wall using retrofitting system were constructed and tested under both vertical and cyclic loadings, Experimental programs were carried out to evaluate and improve the seismic performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. All the specimens were modeled in one-third scale size. For specimens(RWAHC, RWXHC) designed by the improving of seismic performance using the high ductile fiber composite mortar, anchoring, and advanced detailing system for the reinforced concrete shear wall load-carrying capacities were increased $1.1{\sim}1.22$ times in comparison with the standard specimen(SRW).

  • PDF

Mechanical and Repair Performance of Sprayed Ductile Fiber Reinforced Cememtitious Composite(ECC) (습식스프레이공법으로 타설된 고인성 섬유보강 모르타르(ECC)의 역학적 특성과 보수 성능)

  • Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.462-469
    • /
    • 2003
  • This paper presents an experimental study on the potential durability enhancement of infrastructures repaired by a sprayed high ductile fiber-reinforced cementitious composite (ECC). For this study, a PVA-ECC which exhibits sprayable properties in the fresh state and tensile strain-hardening behavior in hardened state was sprayed and tested. The experimental results show that the sprayed ECC exhibits mechanical properties with strain capacity comparable to the cast ECC with the same mix design. During loading, the crack widths of ECC are tightly controlled with an average of 30${\mu}m$. It is also revealed that when sprayed ECC is used as a repair material, ductility represented by deformation capacity at peak load of repaired beams in flexure are obviously increased in comparison to those of commercial prepackaged mortar (PM) repaired beams. In addition to high delamination resistance, the significant enhancement of energy absorption capacity and crack width control in ECC repair system suggest that sprayed ECC can be effective in extending the service life of rehabilitated infrastructures.

Development of an ECC(Engineered Cementitious Composite) Designed with Ground Granulated Blast Furnace Slag (고로슬래그미분말이 혼입된 ECC(Engineered Cementitious Composite)의 개발)

  • Kim, Yun-Yong;Kim, Jeong-Su;Ha, Gee-Joo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.21-28
    • /
    • 2006
  • This paper presents both experimental and analytical studies for the development of an ECC(Engineered Cementitious Composites) using ground granulated blast furnace slag(slag). This material has been focused on achieving moderately high composite strength while maintaining high ductility, represented by strain-hardening behavior in uniaxial tension. In the material development, micromechanics was adopted to properly select optimized range of the composition based on steady-state cracking theory and experimental studies on matrix, and interfacial properties. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties of the fiber in a matrix and the fracture toughness of mortar matrix. The addition of the slag resulted in slight increases in the frictional bond strength and the fracture toughness. Subsequent direct tensile tests demonstrate that the fiber reinforced mortar exhibited high ductile uniaxial tension behavior with a maximum strain capacity of 3.6%. Both ductility and tensile strength(~5.3 MPa) of the composite produced with slag were measured to be significantly higher than those of the composite without slag. The slag particles contribute to improving matrix strength and fiber dispersion, which is incorporated with enhanced workability attributed to the oxidized grain surface. This result suggests that, within the limited slag dosage employed in the present study, the contribution of slag particles to the workability overwhelms the side-effect of decreased potential of saturated multiple cracking.