• Title/Summary/Keyword: High voltage direct current (HVDC)

Search Result 138, Processing Time 0.032 seconds

Frequency and Voltage Control Strategies of the Jeju Island Power System Based on MMC-HVDC Systems

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Song, Seung-Ho;Kim, Eel-Hwan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.204-211
    • /
    • 2018
  • At present, one of two LCC-HVDC systems is responsible for controlling the grid frequency of the Jeju Island Power System (JIPS). The grid voltage is regulated by using STATCOMs. However, these two objectives can be achieved in one device that is called by a modular multilevel converter-high voltage direct current (MMC-HVDC) system. Therefore, this paper proposes frequency and voltage control strategies for the JIPS based on a MMC-HVDC system. In this case, the ancillary frequency and voltage controllers are implemented into the MMC-HVDC system. The modelling of the JIPS is done based on the parameters and measured data from the real JIPS. The simulation results obtained from the PSCAD/EMTDC simulation program are confirmed by comparing them to measured data from the real JIPS. Then, the effect of the MMC-HVDC system on the JIPS will be tested in many cases of operation when the JIPS operates with and without STATCOMs. The objective is to demonstrate the effectiveness of the proposed control strategy.

A study on BTB HVDC location in metropolitan area considering fault current analysis (고장전류를 고려한 수도권 BTB HVDC 위치선정 연구)

  • Yoon, Min-Han;Jang, Gil-Soo;Park, Jung-Soo;Jang, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.274-275
    • /
    • 2011
  • Fault current problems is considered a serious issue in the power system because large fault currents not only cause many side effects to the equipments of power system but also lead to severe problems, such as blackouts. This paper deals with the structural analysis and 3-phase fault current stability of the future Seoul metropolitan power system. The simulation composition and analysis are performed with the 4th KEPCO power supply planning data using PSS/e. Through the results of the simulations, it can be observed that the future Seoul metropolitan system results in a fault current which exceeds the circuit breaker (CB) rate. This unremovable fault current can cause critical damage to power system. To resolve the problem, the algorithm for the application of Voltage Sourced Converter Back-to-Back High Voltage Direct Current (VSC BTB HVDC) is being proposed. where the most suitable location for solving fault current problem in Seoul metropolitan area is being implemented.

  • PDF

Frequency Stabilization Method for Grid Integration of Large-scale Centralized Wind Farms via VSC-HVDC Technology

  • Peng, Yanjian;Li, Yong;Liu, Fang;Xu, Zhiwei;Cao, Yijia
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.547-557
    • /
    • 2018
  • This work proposes a control method of frequency stabilization for grid integration of large-scale wind farms via the voltage source converter-based high-voltage direct current (VSC-HVDC) technology. First, the topology of grid integration of a large-scale wind farm via the VSC-HVDC link is provided, and simple control strategies for wind turbines, wind farm side VSC (WFVSC), and grid side VSC are presented. Second, a mathematical model between the phase angle of WFVSC and the frequency of the wind farm is established. The control principle of the large-scale wind power integrated system is analyzed in theory in accordance with the mathematical model. Third, frequency and AC voltage controllers of WFVSC are designed based on the mathematical model of the relationships between the phase angle of WFVSC and the frequency of the wind farm, and between the modulation index of WFVSC and the voltage of the wind farm. Corresponding controller structures are established by deriving a transfer function, and an optimization method for selecting the parameters of the frequency controller is presented. Finally, a case study is performed under different operating conditions by using the DIgSILENT/PowerFactory software. Results show that the proposed control method has good performance in the frequency stabilization of the large-scale wind power integrated system via the VSC-HVDC technology.

The Development of System for Measuring Ion Generated from HVDC Overhead Transmission Line (초고압 직류 가공 송전선로에서 발생되는 이온 계측시스템 개발)

  • Ju, Mun-No;Yang, Kwang-Ho;Lee, Dong-Il;Shin, Koo-Yong;Lim, Jae-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2035-2040
    • /
    • 2008
  • The electrical discharge of high voltage direct current(HVDC) overhead transmission line generate audible noise, radio noise, electric field, ion current and induced voltage on the ground. These items are major factors to design environmentally friendly configuration of DC transmission line. Therefore, HVDC transmission lines must be designed to keep all these corona effects within acceptable levels. Several techniques have been used to assess interference caused by ions on HVDC overhead transmission line. In this study, to assess the ion characteristic of DC line, the ion current density and induced voltage caused by ion flow were measured by plate electrodes manufactured from a metal flat board and charged bodies, respectively. The charged body has two types of cylinder and cylindrical plate. From the results of calibration experiments, the sensitivity of flat electrode and charged body can be obtained. At present, the developed system is used to investigate the ion generation characteristics of Kochang DC ${\pm}500kV$ test line.

Characterization Test of Sub-Modules for High Voltage DC Transmission System-Based Modular Multi-Level Converter (고압 직류송전망을 위한 모듈형 멀티레벨 컨버터의 서브모듈 특성시험)

  • Seo, Dong-Woo;Jeong, Jong-Kyou;Jung, Hong-Ju
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.344-345
    • /
    • 2019
  • High Voltage Direct Current (HVDC) 시스템은 고압 직류 송전을 위한 시스템으로서 단위 유닛인 서브모듈로 구성된 모듈형 멀티레벨 컨버터 구조를 갖는다. 서브모듈의 신뢰성 확보 및 설계 검증은 HVDC 시스템의 성능과 효율, 크기를 결정짓는 중요한 요소이다. 본 논문에서는 (주)효성이 개발하는 200MW 모듈형 멀티레벨 컨버터 서브모듈의 성능을 검증하기 위한 특성시험을 나타낸다. 특성시험을 통해서 개발 중인 서브모듈의 성능과 보호동작을 검증한다.

  • PDF

Scheme for Reducing Harmonics in Output Voltage of Modular Multilevel Converters with Offset Voltage Injection

  • Anupom, Devnath;Shin, Dong-Cheol;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1496-1504
    • /
    • 2019
  • This paper proposes a new THD reduction algorithm for modular multilevel converters (MMCs) with offset voltage injection operated in nearest level modulation (NLM). High voltage direct current (HVDC) is actively introduced to the grid connection of offshore wind powers, and this paper deals with a voltage generation technique with an MMC for wind power generation. In the proposed method, third harmonic voltage is added for reducing the THD. The third harmonic voltage is adjusted so that each of the pole voltage magnitudes maintains a constant value with a maximum number of (N+1) levels, where N is the number of sub-modules per arm. By using the proposed method, the THD of the output voltage is mitigated without increasing the switching frequency. In addition, the proposed method has advantageous characteristics such as simple implementation. As a part of this study, this paper compares the THD results of the conventional method and the proposed method with offset voltage injection to reduce the THD. In this paper, simulations have been carried out to verify the effectiveness of the proposed scheme, and the proposed method is implemented by a HILS (Hardware in the Loop Simulation) system. The obtained results show agreement with the simulation results. It is confirmed that the new scheme achieved the maximum level output voltage and improved the THD quality.

A Control Algorithm to Improve Transient Performance of HVDC System (HVDC 시스템의 과도 성능 향상을 위한 제어 알고리즘)

  • Song, Min-Seok;Son, Ho-Ik;Kim, Hak-Man
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.441-442
    • /
    • 2015
  • 본 논문에서는 HVDC(High voltage direct current) 시스템의 과도시 HVDC 제어 성능을 향상하기 위하여 일반적으로 수행하는 컨버터 제어방식을 변형한 제어 알고리즘을 제시하고자 한다. 제안하는 제어 알고리즘은 PSCAD/EMTDC를 이용하여 구현하였으며, AC계통의 고장을 모의하여 그 제어 효과를 보였다.

  • PDF

System-Level Vulnerability Analysis for Commutation Failure Mitigation in Multi-infeed HVDC Systems

  • Yoon, Minhan;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1052-1059
    • /
    • 2018
  • This paper deals with commutation failure of the line-commutated converter high voltage direct current (LCC HVDC) system caused by a three phase fault in the ac power system. An analytic calculation method is proposed to estimate the maximum permissible voltage drop at the LCC HVDC station on various operating point and to assess the area of vulnerability for commutation failure (AOV-CF) in the power system based on the residual phase voltage equation. The concept is extended to multi-infeed HVDC power system as the area of severity for simultaneous commutation failure (AOS-CF). In addition, this paper presents the implementation of a shunt compensator applying to the proposed method. An analysis and simulation have been performed with the IEEE 57 bus sample power system and the Jeju island power system in Korea.

Linearity Optimization of DC CT and a Study on the Application of HVDC System (HVDC DC CT 선형성 최적화 및 시스템 적용에 대한 연구)

  • Choi, Yong-Kil;Lee, Eun-Jae;Choi, Ho-Seok;Lee, Wook-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.758-763
    • /
    • 2014
  • These days, the advantages of DC power system are consistently stand out in korea that was a small power loss and high stability. Needs of DC power transmission technology is focused In the midst of a smart grid and environment friendly generation technology boom that is needed for next generation technology. Researches and businesses for HVDC(High Voltage Direct Current) system has been began. But, Needs of HVDC equipment and system commissioning technology are not on the rise until now. In particular, South Korea's HVDC technology is after the foot runner of advanced country and company. In addition, There is no experience for equipment verification and commissioning technology. And Experts of HVDC are rare. Who has been fully understood hardware and system as a whole, and identified all the equipment's characteristic. Recently, Academia and industry are recognized a needs of HVDC technology. But it does not received a recognition of technical value. In this paper, introduce issues when we apply the IEEE's verification method for HVDC system, especially DC current measurement system, DC CT(Direct Current Transformer), among the HVDC equipments. And Proposes remedial methods on the issue in order to recognize the necessity that was HVDC equipments's verification and commissioning technology research should be focused on.

Controller Optimization Algorithm for a 12-pulse Voltage Source Converter based HVDC System

  • Agarwal, Ruchi;Singh, Sanjeev
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.643-653
    • /
    • 2017
  • The paper presents controller optimization algorithm for a 12-pulse voltage source converter (VSC) based high voltage direct current (HVDC) system. To get an optimum algorithm, three methods namely conventional-Zeigler-Nichols, linear-golden section search (GSS) and stochastic-particle swarm optimization (PSO) are applied to control of 12 pulse VSC based HVDC system and simulation results are presented to show the best among the three. The performance results are obtained under various dynamic conditions such as load perturbation, non-linear load condition, and voltage sag, tapped load fault at points-of-common coupling (PCC) and single-line-to ground (SLG) fault at input AC mains. The conventional GSS and PSO algorithm are modified to enhance their performances under dynamic conditions. The results of this study show that modified particle swarm optimization provides the best results in terms of quick response to the dynamic conditions as compared to other optimization methods.