• Title/Summary/Keyword: High vacuum pressure

Search Result 638, Processing Time 0.034 seconds

The Study of DNA Damage Induced by Atmospheric Pressure Plasma Jet and Their Mechanisms

  • Park, Yeunsoo;Song, Mi-Young;Yoon, Jung-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.155.1-155.1
    • /
    • 2013
  • The goals of this study are to elucidate the plasma effects on DNA molecules to apply some plasma based applications and also to find out the mechanisms of plasma-induced DNA damage in biomolecule. Nonthermal atmospheric pressure plasma has much potential for medical, agricultural and food applications for the future. The atmospheric pressure plasma jet (APPJ) contains radicals, charged particles, low energy electrons, excited molecules and UV light. It has been started doing experiments using APPJ at the early 21th. And some recent results showed that APPJ has a possibility to apply to new fields like mentioned above. But it is kind of at the very early stages of plasma based application. It is definitely necessary much of theoretical and experimental studies to further understanding to use nonthermal atmospheric pressure plasma in biomedical, agriculture and food parts. Here we introduce a new experimental system to study plasma effects on biomolecules. And we will show some recent results of LEE-induced DNA damage using electron irradiation apparatus under ultra-high vacuum.

  • PDF

High pressure processing for dark-firm-dry beef: effect on physical properties and oxidative deterioration during refrigerated storage

  • Utama, Dicky Tri;Lee, Seung Gyu;Baek, Ki Ho;Chung, Woon Si;Chung, In Ae;Jeon, Jung Tae;Lee, Sung Ki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.424-431
    • /
    • 2017
  • Objective: Study on the application of high pressure processing (HPP) for dark-firm-dry (DFD) beef was conducted to observe whether HPP has any impact on physical properties and to evaluate oxidative deterioration during refrigerated storage under vacuum. Methods: The longissimus lumborum muscles obtained from Friesian Holstein steers ($33{\pm}0.5$ months old) with 24-h postmortem pH higher than 6.0 were vacuum-packed and subjected to pressurization at 200, 400, and 600 MPa for 180 s at $15^{\circ}C{\pm}2^{\circ}C$; the samples were then stored for 9 days at $4^{\circ}C{\pm}1^{\circ}C$ and compared with control (0.1 MPa). Results: HPP increased meat pH by 0.1 to 0.2 units and the tenderness of cooked DFD beef significantly with no significant effects on meat texture profile. The stability of meat pH was well maintained during refrigerated storage under vacuum. No clear effects were found on the activity of catalase and superoxide dismutase, however, glutathione peroxidase activity was significantly reduced by high pressure. HPP and storage time resulted in aroma changes and the increasing amount of malondialdehyde and metmyoglobin relative composition. Conclusion: Although the increasing amount of malondialdehyde content, metmyoglobin formation and aroma changes in HPP-treated samples could not be avoided, HPP at 200 MPa increased $L^*$ and $a^*$ values with less discoloration and oxidative deterioration during storage.

Simulation of Vacuum Characteristics of High Vacuum System Modelled by VacCAD

  • Kim, Hyungtaek;Park, Junhyung;Yun, Gyeongah
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.84-91
    • /
    • 2018
  • In this paper, we simulated three different HV systems and analyzed of each vacuum characteristics by VacCAD modelling. In each of modelled vacuum systems, selection of chamber materials, combination of rough pump with high vacuum pump and conductance of roughing line (diameter and length) were proposed as system variables. In the modelling of chamber materials, the pumping times to ultimate pressures of different chamber materials (stainless steel, aluminum) were compared by the variations of chamber volume. In this model, the effects of outgassing dependent on the chamber materials was also simulated and aluminum was estimated to optimum chamber materials. It was also obtained that modelling of vane and roots pump with diffusion pump and diameter, length of $50{\times}250$ [mm]roughing line were characterized as optimum variables to reach the ultimate pressure of 10E-7 [mbar] most effectively. Optimum design factors for vacuum characteristics of modelled vacuum system were achieved by VacCAD simulations. Feasibility of VacCAD as vacuum simulator was verified and applications of VacCAD expected to be increased to fields in vacuum needed.

A study on the design of triggering pulse generator for the triggered vacuum switch (진공스위치 트리거 발생기 설계에 관한연구)

  • Kim, Mu-Sang;Son, Yun-Gyu;Park, Ung-Hwa;Lee, Byeong-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.201.2-201.2
    • /
    • 2016
  • The triggered vacuum switch (TVS) is widely used as a high power switch in the field of pulsed power application. TVS can produce current of higher than 100 kA within a microsecond after being triggered. A triggering high voltage pulse generator supplies a high voltage signal to the trigger system to initiate the discharge between a trigger pin and one of main electrode. The trigger system, which consists of a tungsten trigger electrode and cylindrical ceramic insulator around it, is normally installed at the center of main cathode electrode. The discharging characteristics of the trigger system strongly depend on the geometry, electrode material, vacuum pressure and so on. In addition, we especially will focus on the developing a triggering pulse generator, which can vary not only value of voltage but also pulse duration, because its properties gives pivot influences on the TVS discharge. To verify such effects, we made a 3.3 kJ TVS set-up initially. Thus we will discuss some of prominent results from 3.3 kJ TVS system. In parallel we will show on the design of 300 kJ TVS system for the high current in the future.

  • PDF

High Temperature Vaporization of the High Melting Point Oxides (고융점 산화물에 대한 고온 증발)

  • 이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 1978
  • The vapor pressure of the high melting point oxides, MgO, $Cr_2O_3$, and $MgCr_2O_4$ were measured over the temperature range 1300 to 175$0^{\circ}C$ under vacuum <$10^{-5}$ torr by the Langmuir and the Knudsen method. The Langmuir vapor pressure was increased with elevating temperature and with increasing porosity of the specimen. The difference between the vapor preseures measured by the Langmuir and the Knudsen method was decreased with elevating temperature and the Langmuir vapor pressure finally reached the Knudsen vapor pressure at the melting point when extrapolated. The vapor pressure of other important oxides with high melting points, i.e., $Al_2O_3$, $ThO_2$, $Yb_2O_3$ and $Y_2O_3$ were cited from the references. The Langmuir and the Knudsen vapor pressure of these oxides also showed the same results, i.e., they showed the same value at their melting points.

  • PDF

The study of hot cathode ionization vacuum gauges (열음극 전리진공계 특성연구)

  • 홍승수;정광화;신용현;임종연;이상균
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.277-284
    • /
    • 1998
  • To establish the calibration system of hot cathode ionization gauges as transfer gauges, researches were concentrated on measurements of the pressure ratio, the orifice conductance as well as the porous plug conductance of a ultrahigh vacuum standards system. Two ionization gauges obtained from two different vendors were calibrated in the pressure range of $7{times}10^{-7}$ to $4{times}10^{-3}$ Pa by injecting argon gas into the standards system. As a result, a 4% difference was revealed in non-linearity of the extractor ionization gauge due to the pressure difference between high vacuum and ultrahigh vacuum, and 3% for the stabil ionization gauge. It has been understood that the extractor ionization gauge is able to be used within the 10% error, the uncertainty of the extractor ionization gauge, if properly regulating the sensitivity of the gas. The stabil ionization gauge was also proved to be useable in the maximum error margin of 4% without the control of the gas sensitivity.

  • PDF

The Study on Thin Film Fabrication using UHV-LCVD System (I) (UHV-LCVD 장치를 이용한 박막제작에 관한 연구 (I) - 장치 제작을 중심으로 -)

  • Choi, Won-Kook;Yun, Dug-Ju;Gong, Byung-In;Kim, Chang-Hyun;Whang, Chung-Nam;Jeong, Kwang-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.255-260
    • /
    • 1993
  • UHV-LCVD system was constructed for high quality silicon nitride thin film fabrication. This system consisted of a reaction chamber, an introduction chamber with sample load lock entry, a carbinet for gas manipulation controlling gas flow, a $CO_2$ laser and a Fourier transform mass spectrometer. Although the UHV-LCVD system construction was more sophisticated than low pressure CVD, highly pure thin films were fabricated by controlling gas mixing ratio and flow rate in ultra high vacuum surroundings.

  • PDF

Ion Pump Design for Improved Pumping Speed at Low Pressure

  • Paolini, Chiara;Audi, Mauro;Denning, Mark
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.108-115
    • /
    • 2016
  • Even if ion pumps are widely and mostly used in ultra-high vacuum (UHV) conditions, virtually every existing ion pump has its maximum pumping speed around 1E-6 mbar (1E-4 Pa). Discharge intensity in the ion pump Penning cell is defined as the current divided by pressure (I/P). This quantity reflects the rate of cathode bombardment by ions, which underlies all of the various pumping mechanisms that occur in ion pumps (chemisorption on sputtered material, ion burial, etc.), and therefore is an indication of pumping speed. A study has been performed to evaluate the influence of magnetic fields and cell dimensions on the ion pump discharge intensity and consequently on the pumping speed at different pressures. As a result, a combination of parameters has been developed in order to design and build an ion pump with the pumping speed peak shifted towards lower pressures. Experimental results with several different test set-ups are presented and a prototype of a new 200 l/s ion pump with the maximum pumping speed in the 1E-8 mbar (1E-6 Pa) is described. A model of the system has also been developed to provide a framework for understanding the experimental observations.

Effects of pressure during the synthesis of petroleum pitch precursors in open and closed systems

  • Choi, Jong-Eun;Ko, Seunghyun;Kim, Jong Gu;Jeon, Young-Pyo
    • Carbon letters
    • /
    • v.25
    • /
    • pp.95-102
    • /
    • 2018
  • We examined the pressure effects on petroleum pitch synthesis by using open and closed reaction systems. The pressure effects that occur during the pitch synthesis were investigated in three pressure systems: a closed system of high pressure and two open systems under either an atmosphere or vacuum. A thermal reaction in the closed system led to the high product yield of a pitch by suppressing the release of light components in pyrolysis fuel oil. Atmospheric treatment mainly enhanced the polymerization degree of the pitch via condensation and a polymerization reaction. Vacuum treatment results in a softening point increase due to the removal of components with low molecular weights. To utilize such characteristic effects of system pressure during pitch preparations, we proposed a method for synthesizing cost-competitive pitch precursors for carbon materials. The first step is to increase product yield by using a closed system; the second step is to increase the degree of polymerization toward the desired molecular distribution, followed by the use of vacuum treatment to adjust softening points. Thus, we obtained an experimental quinoline insolubles-free pitch of product yield over 45% with softening points of approximately $130^{\circ}C$. The proposed method shows the possibility to prepare cost-competitive pitch precursors for carbon materials by enhancing product yield and other properties.

Stainless-steel sxtreme high vacuum system with a new combination pump (새로운 조합 펌프를 사용한 스테인레스 스틸 극고진공 시스템)

  • 전인규;조복래;정석민
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 1998
  • We have developed an extreme high vacuum (XHV) system using a new combination pump cpmposed of a suitably shaped NEG(Non-Evaporable Getters) in the body of a sputter-ion pump (SIP). The stainless-steel test chamber was used which had been well oxidized at $450^{\circ}C$ and already yielded XHV with a turbomolecular pumping system. The pressure was measured by a Leybold extractor gauge (EXG,limit:1~$2{\times}10^{-12}$torr, but in the ultimate pressure regionthe EXG shows an unusual sign as $-0.{\times}10^{-12}$ torr which indicates much lower pressure range than its available lower limit. These results are mainly due to the high pumping speed of NEG for hydrogen. Furthermore, use of the SIP combined with the NEG as a XHV pumping system implies the potential for actualization of the surface analysis under XHV environment, and allows one to have a chance tp meet a new world in nanometer science and technology.

  • PDF