• Title/Summary/Keyword: High vacuum pressure

Search Result 639, Processing Time 0.029 seconds

Investigation of Characteristics of Second Throat Exhaust Diffuser for Simulating High-Altitude of Liquid Rocket Engine According to Design Parameter (액체로켓엔진 고고도 모사용 2차목 초음속 디퓨져 설계변수에 따른 특성 고찰)

  • Moon, Yoon-Wan;Lee, Eun-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.970-972
    • /
    • 2011
  • The vacuum chamber pressure was investigated according to the second throat exhaust diffuser entrance diameter. The sizes of diffuser entrance were changed three cases, and each case was computed by using CFD. Also in order to relatively compare the vacuum chamber pressure the Euler equation was adopted. According to the results, as the size of diffuser entrance was increased it was observed that the vacuum chamber pressure was decreased.

  • PDF

Optimization analysis on collection efficiency of vacuum cleaner based on two-fluid and CFD-DEM model

  • Wang, Lian;Chu, Xihua
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.261-276
    • /
    • 2020
  • The reasonable layout of vacuum cleaner can effectively improve the collection efficiency of iron filings generated in the process of steel production. Therefore, in this study, the CFD-DEM coupling model and two-fluid model are used to calculate the iron filings collection efficiency of vacuum cleaner with different inclination/cross-sectional area, pressure drop and inlet angle. The results are as follows: The CFD-DEM coupling method can truly reflect the motion mode of iron filings in pneumatic conveying. Considering the instability and the decline of the growth rate of iron filings collection efficiency caused by high pressure drop, the layout of 75° inclination is suggested, and the optimal pressure drop is 100Pa. The optimal simulation results based on two-fluid model show that when the inlet angle and pressure drop are in the range of 45°~65° and 70Pa~100Pa, larger mass flow rate of iron filings can be obtained. It is hoped that the simulation results can offer some suggestion to the layout of vacuum cleaner in the rolling mill.

Characteristics of Cooling Down in the Enclosed Vacuum Tank by Water Driving Ejector (수 이젝터를 이용한 밀폐형 진공탱크내의 온도저감 특성)

  • Kim, Se-Hyun;Shin, You-Sik;Bae, Kang-Youl;Lee, Youn-Whan;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.700-705
    • /
    • 2003
  • The general cooling tower is a device for making a cooling water in refrigerant condensers or industrial process heat exchangers. The present cooling tower have defects with noises, complicated structure and environmental problems. In this paper, we constituted a new water cooling system by using a evaporating latent heat in an enclosed tank, and this system is consisted of an enclosed vacuum tank and water driving ejector system. Several experimental cases were carried out for improvement methods of high vacuum pressure and water cooling characteristics. The ejector performance was tested in case of water temperature variations that flows in the ejector. Based on the vacuum pressure by water driving ejector, the water cooling characteristics were investigated for the vaporized air condensing effects.

  • PDF

Measurement of Vacuum Pressure by Electron Emission from Carbon Nanotube Emitters (탄소나노튜브 전극으로부터 전자방출에 의한 진공도 측정)

  • Kim, Seong-Jeen;Cho, Kyu-Hwan;Kim, Seong-Yeob;Jeon, Jae-Ok;Lee, Sang-Hoon;Choi, Bok-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.396-400
    • /
    • 2005
  • Carbon nanotubes (CNTs) have been well known as electron emitters for field emission applications like FEDs. In this work, we propose as new application a vacuum sensor using CNTs and discuss its current-voltage characteristics as a function of vacuum pressure. The proposed sensor, based on electrical discharge theories in air gap well-known as Townsend theory and as Paschen's law, works by figuring out the variation of the dark current and the initial breakdown voltage depending on the vacuum pressure of air which can ionize through collisions with the electrons accelerated by high electric field.

Extending the Pressure Limit for Turbomolecular Pump up to 133 Pa by using Conductance-Reducer and Measuring the Pressure Differences in Vacuum Chamber (확장한 진공용기 내부의 압력구배 측정)

  • Hong, S.S.;Khan, Wakil;Kang, S.W.;Yun, J.Y.;Shin, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • A dynamic flow system has been developed which can be used for vacuum gauge calibration by comparison method - a calibration method in which the reading of the gauge under calibration is compared to another calibrated vacuum gauge called the "secondary standard" - and other vacuum-related experiments. The chamber of the calibration system is pumped by a turbomolecular pump (TMP), backed by a scroll pump. As maximum acceptable pressure at the inlet of a TMP is 0.1 Pa, above which the TMP decelerates, the pumping speed decreases and it becomes more difficult to adjust pressure under such circumstances. In the present work, high pressures of up to 133 Pa have been generated in the chamber of the newly developed dynamic flow control system by installing a well-designed conductance-reducer in the by-pass line and, at the same time, operating the TMP in safe mode. In addition, the gas flow and pressure distribution within the chamber have been investigated for the entire pressure range (0.1 Pa ~ 133 Pa) while generating pressure dynamically. Maximum deviations in pressure (1.6 %) were observed at point C on the chamber, which is close to the gas inlet port on the top of the chamber.

An Experimental Study of a Diffuser Starting Characteristics for Simulating High-Altitude Environment by using a Liquid Rocket (액체로켓엔진 연소기를 이용한 고고도 환경 모사용 디퓨저 시동특성 연구)

  • Lee, Yang-Suk;Jeon, Jun-Su;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1195-1201
    • /
    • 2010
  • Performance tests of a supersonic exhaust diffuser were conducted by using a liquid rocket engine for simulating high-altitude environment. The experimental setup consisted of a combustion chamber, a vacuum chamber and a diffuser. The combustion tests for simulating high-altitude environment were carried out at three cases by chamber pressure variation(26, 29, 32barg). The test results showed that the diffuser was started at all case and vacuum chamber pressures were approximately 140torr. The starting pressure using combustion gas was similar with that of cold gas, but the vacuum chamber pressure was relatively high because of high temperature in the vacuum chamber. The results of this test can be used as an essential database for the design of real-scale high-altitude simulation test facility in the future.

Modeling and Control of an Electronic-Vacuum Booster for Vehicle Cruise Control

  • Lee, Chankyu;Kyongsu Yi
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1314-1319
    • /
    • 2002
  • A mathematical model and control laws for an Electronic-Vacuum Booster (EVB) for application to vehicle cruise control will be presented. Also this paper includes performance test result of EVB and vehicle cruise control experiments. The pressure difference between the vacuum chamber and the apply chamber is controlled by a PWM-solenoid-valve. Since the pressure at the vacuum chamber is identical to that of the engine intake manifold, the output of the electronic-vacuum booster Is sensitive to engine speed. The performance characteristics of the electronic-vacuum booster have been investigated via computer simulations and vehicle tests. The mathematical model of the electronic-vacuum booster developed in this study and a two-state dynamic engine model have been used in the simulations. It has been shown by simulations and vehicle tests that the EVB-cruise control system can provide a vehicle with good distance control performance in both high speed and low speed stop and go driving situations.

A Study on the Analysis of a Negative Pressure in the Seawater Line of a Main Centeral Cooler (MCC) for a Large LNG Ship (대형 LNG선 주냉각기 해수라인의 부압현상 해석에 관한 연구)

  • Jin, Chang-Fu;SaGong, Woon-Gon;Kim, Jong-Gyu;Kim, Chung-Sik;Song, Young-Ho;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.893-900
    • /
    • 2008
  • The heat exchangers in the ships have been changed from the conventional shell & tube type to the plate type due to some merits as a compactness, a high thermal efficiency and a light-weight. In recent. it is reported that the vacuum phenomena were occurred in the seawater outlet piping of a main central cooler (MCC) on the ships. From the viewpoints of a common sense, the vacuum pressure in the seawater piping is rare event and difficult to be convinced because the seawater is pumped into the piping by a seawater pump with a high discharge head. However, the occurrence of a vacuum pressure in the seawater line of an MCC is real situation and often gives a severe damage to a rubber gasket of an MCC with a plate type heat transfer area. In this study, we analyzed the vacuum pressure in the seawater line of an MCC by using the simpl Bernoulli's equation and found that the vacuum pressure in the seawater line of an MCC is inevitable untill the installation postion of an MCC is not lowered.

The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak (KSTAR 토카막 진공용기 및 플라즈마 대향 부품의 탈기체 처리를 위한 가열 해석)

  • Lee, K.H.;Im, K.H.;Cho, S.;Kim, J.B.;Woo, H.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.247-254
    • /
    • 2000
  • The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, $10^{-6}{\sim}10^{-7}Pa$, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least $250^{\circ}C,\;350^{\circ}C$ respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  • PDF

Effects of Vacuum Hot Pressing Conditions on Mechanical Properties and Microstructures of $SiC_w$/2124Al Metal Matrix Composites (Vacuum Hot Pressing 조건이 $SiC_w$/2124AI 금속복합재료의 기계적 성질 및 미세구조에 미치는 영향)

  • 홍순형
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.159-166
    • /
    • 1994
  • The variation of the microstructures and the mechanical properties with varying vacuum hot pressing temperature and pressure was investigated in PyM processed 20 vol%) SiCw/ 2124Al composites. As increasing the vacuum hot pressing temperature, the aspect ratio of whiskers and density of composites increased due to the softening of 2124Al matrix with the increased amount of liquid phase. The tensile strength of composite increased with increasing vacuum hot pressing temperature up to $570^{\circ}C$ and became saturated above $570^{\circ}C$, To attain the high densification of composites above 99%, the vacuum hot pressing pressure was needed to be above 70 MPa. However, the higher vacuum hot pressing pressure above 70 MPa was not effective to increase the tensile strength due to the reduced aspect ratio of SiC whiskers from damage of whiskers during vacuum hot pressing. A phenomenological equation to predict the tensile strength of $SiC_w$/2124AI composite was proposed as a function including two microstructural parameters, i.e. density of composites and aspect ratio of whiskers. The tensile strength of $SiC_w$/2124AI were found more sensitive to the porosity than other P/M materials due to the higher stress concentration and reduced load transfer efficiency by the pores locating at whisker/matrix interfaces.

  • PDF