• Title/Summary/Keyword: High vacuum pressure

Search Result 638, Processing Time 0.036 seconds

Effect of Precooling on Removal of Field Heat and Respiration Rate of Vegetable Corn(Zes Mays L.) (예냉처리가 풋옥수수의 냉각속도 및 호흡량 변화에 미치는 영향)

  • 손영구;김성열
    • Food Science and Preservation
    • /
    • v.3 no.1
    • /
    • pp.55-60
    • /
    • 1996
  • To obtain the basic data on precooling effects for establishment the suitable postharvest handling technique or method of keeping high quality of vegetalble corn, the sweet, supersweet and waxy corn, (Danok #2, Cocktail #86 and Chalok #1), being mainly consumed as vegetables in Korea, were precooled with ice or vacuum cooling method immediately after harvest. The vacuum cooling was the most effective for the field heat removal of vegetable corn. It took only 30 min. at 4 to 5 torr of cold chamber pressure of vacuum precooler to lower the corn temperature from 30 to 2$^{\circ}C$. The ice cooling was also thought to be a useful precooling method with relatively short cooling time of 6 hrs. The vegetable corn treated with vacuum or ice cooling showed low and stable respiration rates of 25.5 to 43.5 CO2 mg/kg/hr. when stored at 0∼2$^{\circ}C$ while the samples stored at room temperature (20∼25$^{\circ}C$) without precooling were as high as 64.1 to 245 CO, mg/kg/hr.

  • PDF

Fabrication Process of Aluminum Bipolar Plate for Fuel Cell using Vacuum Die Casting (진공 다이캐스팅 공법을 이용한 연료전지용 알루미늄 분리판의 제조 공정)

  • Jin, Chul-Kyu;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.71-78
    • /
    • 2011
  • This study aims to investigate the formability of bipolar plates for fuel cell fabricated by vacuum die casting of ALDC 6. Cavity shape of mold is thin walled plate (size: $200mm{\times}200mm{\times}0.8mm$) with a serpentine channel (active area: $50mm{\times}50mm$). Before bipolar plate was made by HPDC, computational filling behavior and solidification was performed by MAGMA soft. The final mold design for location and direction of channel was determined by computational simulation. Also, according to injection speed conditions, simulation result was compared to actual die casting experimental result. When vacuum pressure, injection speed of low and high region is 350 mbar, 0.3 m/s and 2.5 m/s respectively, products had few casting defects. On the other hand, at the same as injection speed, without vacuum pressure, products had many casting defects between end of the channel and overflow.

Emission Plasma Spectroscopy of High-pressure Microdischarges

  • Lee, Byeong-Jun;Ju, Yeong-Do;Kim, Seung-Hwan;Ha, Tae-Gyun;Gong, Hyeong-Seop;Park, Yong-Jeong;Park, Jong-Do;Nam, Sang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.253.2-253.2
    • /
    • 2014
  • Micro hollow cathode discharges (MHCDs) are high-pressure, non-equilibrium discharges. Those MHCDs are useful to produce an excimer radiation. A major advantage of excimer sources is their high internal efficiency which may reach values up to 40% when operated under optimum conditions. To produce strong excimer radiation, the optimisation of the discharge conditions however needs a detailed knowledge of the properties of the discharge plasma itself. The electron density and temperature influence the excitation as well as plasma chemistry reactions and the gas temperature plays a major role as a significant energy loss process limiting efficiency of excimer radiation. Most of the recent spectroscopic investigations are focusing on the ultraviolet or vacuum ultraviolet range for direct detection of the excimer. In our experiments we have concentrated on investigating the micro hollow cathodes from the near UV to the near infrared (300~850 nm) to measure the basic plasma parameters using standard plasma diagnostic techniques such as stark broadening for electron density and the relative line intensity method for electron temperature. Finally, the neutral gas temperature was measured by means of the vibrational rotational structures of the second positive system of nitrogen.

  • PDF

Properties of ZnO:Al Thin Films Deposited by RF Magnetron Sputtering with Various Base Pressure (RF Magnetron Sputtering법으로 제작한 ZnO:Al 박막의 초기 압력에 따른 특성)

  • Kim, D.K.;Kim, H.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.141-145
    • /
    • 2011
  • ZnO:Al thin films were deposited by RF magnetron sputtering with various base pressure, and their structural, optical, and electrical properties were studied. The influence of the base pressure on the ZnO:Al thin film was confirmed and a high-quality thin film was obtained by controlling the base pressure. In all Al-doped ZnO thin films, the preferred orientation of (002) plane was observed and light transmittance in visible region (400 nm~800 nm) had above 85%. With decreasing of base pressure, crystallinity, resistivity, and figure of merit were improved. The improvement of resistivity with base pressure was attributed to the change of grain size.

Atmospheric Pressure Plasma Research Activity in Korea

  • Uhm, Han S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.367-377
    • /
    • 2001
  • Plasma is generated by electrical discharge. Most plasma generation has been carried out at low-pressure gas typically less than one millionth of atmospheric pressure. Plasmas are in general generated from impact ionization of neutral gas molecules by accelerated electrons. The energy gain of electrons accelerated in an electrical field is proportional to the mean free path. Electrons gain more energy at low-pressure gas and generate plasma easily by ionization of neutrals, because the mean free path is longer. For this reason conventional plasma generation is carried out at low pressures. However, many practical applications require plasmas at high-pressure. In order to avoid the requirement for vacuum pumps, researchers in Korea start to develop plasmas in high-pressure chambers where the pressure is 1 atmosphere or greater. Material processing, environmental protection/restoration and improved energy production efficiency using plasmas are only possible for inexpensive bulk plasmas. We thus generate plasmas by new methods and plan to set foundations for new plasma technologies for $21^{st}$ / century industries. This technological research will play a central role in material processing, environmental and energy production industries.

  • PDF

Nature-Inspired high sensitivity tactile sensor technology (자연모사 고감도 촉각센서 기술)

  • Kim, Tae Wi;Lee, Eun Han;Kang, Daeshik
    • Vacuum Magazine
    • /
    • v.4 no.3
    • /
    • pp.6-11
    • /
    • 2017
  • The tactile sensor of the future robot is becoming a necessity as a sensory organ which can communicate with the person most directly. Recently, the Nature-inspired technology has provided a new direction for the development of these tactile sensors. Here, we review three different nature-inspired tactile sensory system; high sensitivity pressure sensor inspired by beetle wings, highly sensitive strain sensor inspired by the spider's sensory organs, Tactile sensor inspired by human fingertip. These nature-inspired tactile sensors are expected to provide a breakthrough that not only can sensitively measure the pressure, but also delicately recognize the softness and texture of the material just like human.

The improvement of cut-off probe for measuring plasma density at hard conditions

  • Kim, Dae-Ung;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.202-202
    • /
    • 2011
  • Diagnostics of plasma density is a key factor for monitoring plasma processing. Various probes are invented to measure plasma density and cut-off probe is a one of the most promising diagnostics tool for measuring plasma density. However, at the low density or high pressure the cut-off probe cannot clearly resolve the cut-off peak. Several reasons make this problem: Cut-off likes peaks caused by cavity resonances and weaken transmission spectrum signal at high pressure. Recently, You et al., have researched mechanism of cut-off probe and we improve the cut-off reliability and sensitivity base on that research. Modified cut-off antenna is adapted and bias cut-off probe method is tried. These experiment results have good agreement with the previous study and show good measurement characteristics.

  • PDF

Study on Design- and Operating- Parameters of Supersonic Exhaust Diffusers Simulating high Altitude (고고도 모사용 초음속 디퓨져의 설계인자 및 작동인자에 대한 연구)

  • Yoon, Sang-Kyu;Kim, Jin-Kon;Sung, Hong-Gye;Kim, Yong-Wook;Oh, Seung-Hyup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.303-306
    • /
    • 2007
  • A engineering analysis has been conducted to study operating characteristics of a supersonic exhaust diffuser simulating high altitude atmosphere from a flow-developing point of view. Emphasis is placed in the detail flow structure resulting from several design- and operating- parameters of the diffuser such as the area ratios of a exhaust nozzle to the diffuser, the vacuum chamber size, and jet pressure.

  • PDF

분자 드래그 회전자 형상에 따른 복합분자펌프의 배기성능에 관한 실험적 연구

  • Hwang Yeong-Gyu;Gwon Myeong-Geun
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.05a
    • /
    • pp.202-205
    • /
    • 2006
  • Recently, high vacuum pumps are widely used in the semi-conduction and liquid-crystal display ( LCD ) process. The composite-type high vacuum pumps are widely used in the various processes. In this study, the pumping performance of composite-type molecular pumps has been investigated experimentally. The experimented pumps are a compound molecular pump ( CMP ) and hybrid molecular pump ( HMP ). The CMP consists with helical-type drag pump, at lower part, and with turbomolecular pump ( TMP ), at upper part. The HMP consists with disk-type drag pump, at lower part, and with TMP, at upper part. The experiments are performed in the outlet pressure of $0.2\;{\sim}\;533\;Pa$. We have measured the ultimate pressure, compression ratio, and pumping speed

  • PDF

산화규소 박막을 활용한 반사방지막 코팅 제조 및 특성분석

  • Kim, Gyeong-Hun;Kim, Seong-Min;Jang, Jin-Hyeok;Han, Seung-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.300.1-300.1
    • /
    • 2013
  • 반사방지막 코팅(Anti-reflection coating)은 태양전지(Solar cell), 발광다이오드(LED) 등의 반사율을 낮추어 효율을 증대시키기 위하여 사용되고 있다. 본 실험에서는 유리 기판 위에 실리콘 타겟을 이용한 Reactive magnetron sputtering 장비를 활용하여, 50~100 mTorr의 높은 공정 압력(High pressure)에서 증착하여 SiO2 반사방지막 코팅층을 형성하였다. Ellipsometer를 이용하여 SiO2 박막층의 굴절률(Refractive index)을 측정한 결과, 공정 압력에 따라 SiO2 박막이 다양한 굴절률을 가지는 것을 확인할 수 있었다. 또한, UV-Vis spectrometer를 이용하여, 450~600 nm 파장에서의 반사율(Reflectance)과 투과율(Transmittance)을 측정하여 비교, 분석하였다. 나아가 증착된 SiO2 반사방지막을 비정질 실리콘 박막 태양전지에 적용하여 효율 향상 효과를 실험하였다. 이를 활용하여 낮은 굴절률을 갖는 반사방지용 SiO2 코팅층을 형성하여 태양전지의 광 변환 효율을 상승 시킬 수 있고, 발광다이오드의 광 추출 효율을 증가시킬 있을 것으로 여겨진다.

  • PDF