• Title/Summary/Keyword: High turbidity

Search Result 495, Processing Time 0.027 seconds

Prolonged Turbidity of the Lower Nakdong River in 2003

  • Kim, Dong-Kyun;Kim, Hyun-Woo;Kim, Gu-Yeon;Kim, Young-Sang;Kim, Myoung-Chul;Jeong, Kwang-Seuk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.44-53
    • /
    • 2005
  • The Nakdong River, which lies in a monsoon climate zone with warm rainy summers and cold dry winters, is a typical ecosystem showing the attributes of a regulated river. In 2003, the total annual rainfall (1,805 mm) was higher than the average of the past nine years from 1994 to 2002 (1,250 mm). In September a powerful typhoon, Maemi, caused a big impact on the limnology of the river for over two months. Among the limnological variables, turbidity in 2003 (37.4 ${\pm}$ 94.1 NTU, n = 54) was higher than the annual average for ten years (18.5 ${\pm}$ 2.3 NTU, n = 486) in the lower part of the river (Mulgum: RK 28). Furthermore, physical disturbance (e.g. stream bank erosion within channel) in the upstream of the Imha Dam (RK ca. 350; river distance in kilometer from the estuary barrage) in the upper part of the river was a source of high turbidity, and impacted on the limnological dynamics along a 350 km section of the middle to lower part of the river. After the typhoon, high turbidity persisted more than two months in the late autumn from September to November in 2003. Flow regulation and the extended duration of turbid water are superimposed on the template of existing main channel hydroecology, which may cause spatial changes in the population dynamics of plankton in the river.

Sludge Thickening using Electro-Flotation in Water Treatment Plant (전해부상에 의한 상수 슬러지 농축효율)

  • Lee, Jun;Han, Mooyoung;Dockko, Seok;Park, Yonghyo;Kim, Tschungil;Kim, Mikyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Gravity thickening process has been widely used in WTP sludge thickening at domestic water treatment plant. The operation method of the process is very simple, however, the process requires long detention time about 24~48 hours for sludge thickening, uses polymer, and low total solids of thickened sludge to increase sludge thickening efficiency. To solve there problems, we studied about flotation process, especially, electro-flotation (EF) process in WTP sludge thickening. Electro-flotation process is simpler than dissolved-air-flotation(DAF) process because EF needs only electrode and current to generate micro-bubbles and the operation is easy. This study was performed at two batch columns to compare interface height, total solids, effluent turbidity between an electro-flotation thickening and a gravity thickening. According to the result, an electro-flotation thickening was that interface height was decreasing, total solids had high concentration, and effluent turbidity was low in comparison with a gravity thickening. Also, it will make the high efficiency of following process, such as a dehydrating process and digestive process. because of high total solids and low moisture content in the sludge.

Studies on Chemical and Biological Processes in the Keum River Estuary, Korea 1. The Cycle of Dissolved Inorganic Nitrogen : General Considerations (금강 하구에서의 화학적, 생물학적 제과정에 관한 연구 1. 질소계 화합물의 순환 : 전반적 고찰)

  • 김경렬;기준학
    • 한국해양학회지
    • /
    • v.22 no.3
    • /
    • pp.191-206
    • /
    • 1987
  • Keum River discharges 6.4billion tons of fresh water annually into the Yellow Sea. More than 60% of the total discharge is concentrated in summer, differentiating distinct low-discharge and high-discharge periods for the estuarine environment. The concentration of SPM(Suspended Particulate Matter) is, in general, very high, except sometime during rainy season, and turbidity maximum is often observed, especially during spring-tides(Lee and Kim, 1987).

  • PDF

Observations of Treatment Efficiency and Fouling in Submerged Membrane Filtration Treating High-Turbidity Source Water (고탁도 원수대응 침지식 멤브레인 여과에서 공기폭기 및 용액조성에 따른 파울링 및 처리효율 관찰)

  • Jang, Hoseok;Byun, Youngkwon;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.77-83
    • /
    • 2017
  • Transient behavior of fouling resistance was observed with a laboratory-scaled, submerged microfiltration membrane system treating high-turbidity source water consisting of inorganic silica particles and humic acid. Fouling mitigation efficiency with inorganic silica particles caused by aeration was reduced significantly as both humic acid and calcium ion existed together. Scanning electron microscopic observations showed that humic acid was adsorbed onto the surface of inorganic silica particles in the presence of calcium. Turbidity removal was achieved almost completely by submerged MF system regardless of feed compositions. However, the $UV_{254}$ removal of humic acid was improved in the presence of both calcium and inorganic silica particles. Additionally, increasing air-flow rate tended to increase $UV_{254}$ removal efficiency higher than 80%. This may be caused by back-transport of humic acid enhanced by inorganic silica particles providing surface for organic adsorption in the presence of calcium.

The Characteristics of Groundwaters in Taegu City (대구시 지하수의 수질특성)

  • Park Byung-Yoon;Cheon Kyung-Ah;Lee Dong-Hoon;Choi Choong-Ryeol;Choi Jyung;Kim Jin-Ho
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.685-690
    • /
    • 1999
  • The pollution characteristics of groundwaters in Taegu City and correlation coefficients(r) between water pollution indicators were investigated for two years from January 1996 to December 1997. Volatile organic compounds such as TCE(tri-chloroethylene), PCE(tetrachloroethylene), l,l,l-trichloroethane, THM(trihalo-methane), dichloromethane, pesticides such as diazinon, parathion, malathion, and toxic inoganic matters such as As, Hg, Se, Pb, Cd, $Cr_6^+,$ CN were not detected in the groundwaters. Mean values of groundwater pollution indicators were below drinking-water standards, but hardness, $KMnO_4-C(potassium$ permanganate consumption), evaporate residues, $SO_4^{-2},\;Fe,\;NO_3^{-}-N,$ color and turbidity exceeded a little in some samples. As groundwater became deeper, hardness and evaporate residues remarkably increased, but $KMnO_4-C,\;NO_3^{-}-N,\;Cl-,$ color, turbity and bacteria decreased. $KMnO_4-C,$ evaporate residues, $Cl^-\;and\;SO_4^{-2}$ were very high at industrial and commercial areas, and $NO_3^--N$ and $NH_4^+-N$ were very high at agricultural and forest areas. It showed high positive significances in the relationships between hardness and each of evaporate residues, $SO_4^{-2}$, Zn and Mn, $KMnO_4-C$ and each of color, turbidity and Zn, color and each of turbidity, Cu, Zn and Mn, turbidity and each of Fe, Cu, Zn and Mn, and evaporate residues and each of $Cl^-,\;SO_4^{-2}$ and Zn.

  • PDF

Performance Analysis of Sonar System Applicable to Underwater Construction Sites with High Turbidity (탁도가 높은 수중작업현장에 사용 가능한 소나시스템의 성능 분석)

  • Shin, Changjoo;Jang, In-Sung;Kim, Kihun;Choi, Hyun-Tack;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4507-4513
    • /
    • 2013
  • The developing unmanned underwater equipment can be used for underwater construction site such as underwater leveling works. If a optical camera is applied to the unmanned underwater equipment, recognition in underwater can be gone to low due to high turbidity in working field. To overcome this problem, a sonar will be installed to the unmanned underwater equipment. In this study, the resolution of the sonar and the quality test of the sonar image under high turbidity environment were conducted. And the method to indicate the boundary of the underwater construction site was proposed. By these results, the basic performance of the sonar was evaluated.

Effect of Particulate Matter on the UV-Disinfection of Virus and Risk Assessment (입자성 물질 농도가 바이러스의 UV-처리와 위해성에 미치는 영향 평가)

  • Shin, Yu-Ri;Yoon, Chun-Gyeong;Rhee, Han-Pil;Lee, Seung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1028-1033
    • /
    • 2010
  • Wastewater reuse for agricultural irrigation needs treatment and control of pathogens to minimize risks to human health and the environment. In order to evaluate the water quality of UV-treated reclaimed water, this study focused on the relationship between micro-pathogens and particulate matters. MS2 was selected as an index organism because it has similar characteristics to human enteric virus and strong resistance to UV disinfection. The turbidity and suspended solid (SS) were selected for test parameters. In this study, it was performed with different UV doses (30 and $60mJ/cm^2$) for estimation of the MS2 inactivation rate using collimated beam batch experiments in the laboratory. The experiment results by turbidity or SS concentration presented that the increased concentration of them lowered MS2 inactivation. At the turbidity (below 4.27 NTU) and SS (below 1.47 mg/L) of the low level range, the inactivation of 60 UV dose is higher than 30 UV dose. However, at the turbidity and SS of the high level, the increasing UV dose did not show apparent increasing the MS2 inactivation. In quantitative microbial risk assessment (QMRA), it can confirm the trend that $P_D$ and turbidity concentrations have positive correlationship at the low concentration, which was also observed in SS. The QMRA can be helpful in communication with public for safe wastewater reuse and be recommended.

Optimal coagulant and its dosage for turbidity and total organic dissolved carbon removal (탁도와 총유기탄소 제거를 위한 최적응집제 및 투여량 선정 연구)

  • Park, Hanbai;Woo, Dal-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2321-2327
    • /
    • 2015
  • Three coagulants, alum sulfate(alum), poly aluminum chloride(PAC) and poly aluminum silicate chloride (PASC), were used to remove low to high turbidity and TOC in surface and ground blended water. Laboratory experiments and pilot plant experiments were carried out to evaluate the optimal coagulant and its dosage. To determine the optimized coagulant and its dosage, the turbidity, TOC and pH were measured. The experimental results showed the best removal performance using PASC. The optimal dosage of PASC between 3-20 NTU was found to be 15 mg/L in the jar test. In the pilot test, a 15 mg/L PASC dosage was applied and resulted in the efficient removal of turbidity and TOC between 3.6-27 NTU. The removal efficiency of PASC increased with increasing turbidity and TOC.

Analyzing the Effect of an Extreme Turbidity Flow Event on the Dam Reservoirs in North Han River Basin (북한강 수계 대규모 탁수사상 발생에 의한 댐 저수지의 탁수 영향 분석)

  • Park, Hyung-Seok;Chung, Se-Woong;Choung, Sun-a
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.282-290
    • /
    • 2017
  • A long-term resuspension of small particles, called persistent turbidity, is one of the most important water quality concerns in the dam reservoirs system located in North Han River. Persistent turbidity may incur aesthetic nuisance and harmful effect on the ecosystem health, in addition to elevated water treatment costs for the drinking water supply to the Seoul metropolitan area. These sufferings have been more intensified as the strength and frequency of rainfall events increase by climate change in the basin. This study was to analyze the effect of an extreme turbidity flow event that occurred in 2006 on the serial reservoirs system (Soyang-Uiam-Cheongpyung-Paldang) in North Han River. The CE-QUAL-W2 model was set up and calibrated for the river and reservoirs system using the field data obtained in 2006 and 2007. The results showed that Soyang Reservoir released turbid water, which was classified as the TSS concentration is greater than 25 mg/L, for 334 days with peak TSS of 264.1 mg/L after the extreme flood event (592.7 mm) occurred between July 10 and 18 of 2006. The turbid water departed from Soyang Reservoir reached at the most downstream Paldang Reservoir after about 20 days and sustained for 41 days, which was validated with water treatment plant data. Since the released water from Soyang Reservoir had low water temperature and high TSS, an underflow formed in the downstream reservoirs and vertically mixed at Paldang Reservoir due to dilution by the sufficient inflow from South Han River.

A Study on the Turbidity Estimation Model Using Data Mining Techniques in the Water Supply System (데이터마이닝 기법을 이용한 상수도 시스템 내의 탁도 예측모형 개발에 관한 연구)

  • Park, No-Suk;Kim, Soonho;Lee, Young Joo;Yoon, Sukmin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • Turbidity is a key indicator to the user that the 'Discolored Water' phenomenon known to be caused by corrosion of the pipeline in the water supply system. 'Discolored Water' is defined as a state with a turbidity of the degree to which the user visually be able to recognize water. Therefore, this study used data mining techniques in order to estimate turbidity changes in water supply system. Decision tree analysis was applied in data mining techniques to develop estimation models for turbidity changes in the water supply system. The pH and residual chlorine dataset was used as variables of the turbidity estimation model. As a result, the case of applying both variables(pH and residual chlorine) were shown more reasonable estimation results than models only using each variable. However, the estimation model developed in this study were shown to have underestimated predictions for the peak observed values. To overcome this disadvantage, a high-pass filter method was introduced as a pretreatment of estimation model. Modified model using high-pass filter method showed more exactly predictions for the peak observed values as well as improved prediction performance than the conventional model.