• Title/Summary/Keyword: High temperature tensile properties

Search Result 662, Processing Time 0.024 seconds

A Study on Properties of SSBR/NdBR Rubber Composites Reinforced by Silica

  • Lee, Dam-Hee;Li, Xiang Xu;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.202-206
    • /
    • 2018
  • Five solution styrene butadiene rubber/neodymium butadiene rubber (SSBR/NdBR) composites were manufactured using different ratios of SSBR and NdBR. In this study, the composites were reinforced with NdBR and silica to confirm the physical properties of SSBR used for treads of automobile tires and the dispersibility with silica. The morphologies of the rubber composites were observed using field-emission scanning electron microscopy (FE-SEM). The crosslinking behaviors of the composites were tested using a rubber process analyzer (RPA), and the abrasion resistances were tested using a National Bureau of Standards (NBS) abrasion tester. The hardness values, tensile strengths, and cold resistances of the composites were also tested according to ASTM standards. Increased NdBR content yielded composites with excellent crosslinking properties, abrasion resistances, hardnesses, tensile strengths, and cold resistances. The crosslinking point increased due to the double bond in NdBR, thereby increasing the degree of crosslinking in the composites. The NdBR-reinforced composites exhibited excellent abrasion resistances, which is explained as follows. In SSBR, a breakage is permanent because a resonance structure between styrene and SSBR forms when the molecular backbone is broken during the abrasion process. However, NdBR forms an additional crosslink due to the breakdown of the molecular backbone and high reactivity of the radicals produced. In addition, the low glass transition temperature (Tg) of NdBR provided the rubber composites with excellent cold resistances.

Development of New Titanium Alloys for Castings (주조용 티타늄 신합금 개발)

  • Kim, Seung-Eon;Jeong, Hui-Won;Hyeon, Yong-Taek;Kim, Seong-Jun;Lee, Yong-Tae
    • 연구논문집
    • /
    • s.29
    • /
    • pp.163-171
    • /
    • 1999
  • A new titanium alloy system. Ti-xFe-ySi (x,y=0-4 wt%). was designed and characterized with the point at low cost and high strength for casting applications. Fe improved room and elevated temperature mechanical properties owing to solid solution hardening and beta phase stabilization. Si yielded titanium silicides and Si addition over 1 wt% resulted in poor ductility due to coarse silicide chains at prior beta boundaries. The optimum composition was found to be Ti-4Fe-(0.5-1)Si in the viewpoint of tensile strength and ductility which are comparable to the Ti-6Al-4V. The metal-mould reaction was also examined for Ti-xFe and Ti-xSi binary alloy system. The thickness of surface reaction layer w as not affected significantly with Fe content, while it was decreased with Si content. In the Ti-4Si alloy, no reaction layer was found. The depth of surface hardening layer was about $200\mum$ regardless of the mould materials.

  • PDF

Evaluation on the Mechanical Properties of Fire Resistant Steels at High Temperature Conditions with Manufacturing Processes (제조 방식에 따른 건축용 내화강재의 고온 시 기계적 특성 평가)

  • Kwon, In Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.181-190
    • /
    • 2007
  • A fire-resistant steel with enhanced load-bearing capacity has been developed to enable structural elements such as columns and beams withstand exposure to severe fire conditions. To precisely evaluate the fire-resistant performance of structural elements that compose fire-resistant steels, mechanical properties such as yield strength and elastic modulus are essential. To obtain the mechanical database of fire-resistant steels at high temperatures, tensile tests at high temperatures were conducted on steels of two kinds of thicknesses. The results showed that the thickness difference could not affect the mechanical properties at a high temperature.

The Production Technology of High Strength and High Toubhness Wear Resistance Steel (고강도 고인성 내마모강의 제조기술)

  • 신정호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.163-166
    • /
    • 2000
  • The production technology of high strength and toughness wear resistance steel involves attempt to application of severe wear parts for the construction machinery. A well balanced alloy content ensures that optimum tensile properties are achieved for the high strength. After high temperature deformation like as rolling or forging it has bainite microstructure and lower yield rato(under 80%) The effectiveness of the research approach is illustrated with experimental results on good steel cleanliness(O2 :12.2 ppm, 0,004% S, 0.008%, P nonmetalic inclusion dT: 0.10) and excellent mechanical properties (TS$\geq$140kgf/mm2 El $\geq$10% IV$\geq$20j/cm2) Therefore this should be wear resistance steel which develops high strength and high toughness without heat treatment

  • PDF

The Electrical Properties and Residual Stress of Pb(Zr,Ti)O$_3$ Piezoelectric Thin Films fabricated by 2- Step Deposition Method (2단계 증착법으로 제조된 Pb(Zr, Ti)O$_3$압전 박막의 전기적 특성 및 잔류 응력에 관한 연구)

  • Kim, Hyuk-Hwan;Lee, Kang-Woon;Lee, Won-Jong;Nam, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.769-775
    • /
    • 2001
  • High quality PZT piezoelectric thin films were sputter- deposited on$ RuO_2$/$SiO_2$/Si substrates by using 2-step deposition method. As the first step, PZT seed layers were fabricated at a low temperature($475^{\circ}C$ ) to form a pure perovskite phase by reducing the volatility of Pb oxide. and then, as the second step, the PZT films were deposited at high temperatures ($530^{\circ}C$~$570^{\circ}C$) to reduce the defect density in the films. By this method, the pure perovskite phase was obtained at high deposition temperature range ($530^{\circ}C$~$570^{\circ}C$) and the superior electrical properties of PZT films were obtained on $RuO_2$substrate : 2Pr : 60$\mu$C/$\textrm{cm}^2$, $E_c: 60kV/cm, \;J_t: 10^{-6}A/cm^2\; at\; 250kV/cm$. The residual stress of PZT films fabricated by the 2-step deposition method was tensile and below 150MPa. It was attempted to control the residual stress in the PZT films by applying a negative bias to the substrate. As the amplitude of the substrate bias was increased, the residual tensile stress was slightly decreased, however, the ferroelectric properties of PZT films were degraded by ion bombardment.

  • PDF

Evaluation of Applicability of Circuit-analog Radar Absorbing Structures for High Temperature in 350℃ and Hot-wet Environment (고온용 Circuit-analog 전파흡수구조의 350℃ 및 열 수분 환경에서의 적용성 평가)

  • Min-Su Jang;Ho-Beom Kim;Heon-Suk Hong
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.335-341
    • /
    • 2023
  • We proposed a high-temperature circuit-analog radar absorbing structures (CA-RAS), and evaluated radar absorption performance and tensile properties in 350℃ and a hot-wet environment. The CA-RAS was implemented with a glass/cyanate ester composites and a square resistive pattern layer, and reflection loss was measured by 350℃ and after exposure of hot-wet condition using free space measurement. And the tensile strength at 350℃ and after exposure of hot-wet condition was measured according to the ASTM D638. The proposed CA-RAS showed a 4 GHz of -dB bandwidth and -20 dB of a peak value at 350℃. In addition, there was no deterioration in absorption performance after exposure to a hot-wet condition. The tensile strength value of more than 95% compared to the strength of the glass/cyanate ester composite was confirmed at 350℃ and after exposure of hot-wet condition. Through this, the applicability of CA-RAS proposed in this study was confirmed as a load bearing structure for stealth weapon exposed to high temperature and hot-wet environment.

High Temperature Fatigue Life Prediction for Welded Joints of Recuperator Material for UAV (무인기용 레큐퍼레이터 소재의 용접부에 대한 고온 피로수명 예측)

  • Lee, Sang-rae;Kim, Jae-hwan;Kim, Jae-hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.111-117
    • /
    • 2019
  • An experimental study on the welding part of a heat transfer plate that constitutes the lightweight and high efficiency recuperator is presented in this paper. In particular, to find out the service life of the welded part, fatigue characteristics were determined through experiments. Experiments were carried out on two materials (STS347, AL20-25 + nb), which are selected as the material of the recuperator; further, the specimens were manufactured through the methods used for actual fabrication and the standards recommended by ASTM. To evaluate the mechanical properties of the specimens at room and high temperature, MTS-810 was used in a high-temperature furnace. The tensile test was carried out at room and high temperatures for each specimen. The fatigue test was carried out by setting the load ratio corresponding to 50%, 40%, 30%, 20%, and 10% of the tensile strength at the stress ratio of 0.1. Finally, the fatigue life characteristics obtained by the experiment were compared with the stresses owing to the load generated in the operating conditions of the recuperator, and the lifetime of the welds was evaluated to prepare for the operation time required by the UAV.

Effect of ages and season temperatures on bi-surface shear behavior of HESUHPC-NSC composite

  • Yang Zhang;Yanping Zhu;Pengfei Ma;Shuilong He;Xudong Shao
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.359-376
    • /
    • 2023
  • Ultra-high-performance concrete (UHPC) has become an attractive cast-in-place repairing material for existing engineering structures. The present study aims to investigate age-dependent high-early-strength UHPC (HESUHPC) material properties (i.e., compressive strength, elastic modulus, flexural strength, and tensile strength) as well as interfacial shear properties of HESUHPC-normal strength concrete (NSC) composites cured at different season temperatures (i.e., summer, autumn, and winter). The typical temperatures were kept for at least seven days in different seasons from weather forecasting to guarantee an approximately consistent curing and testing condition (i.e., temperature and relative humidity) for specimens at different ages. The HESUHPC material properties are tested through standardized testing methods, and the interfacial bond performance is tested through a bi-surface shear testing method. The test results quantify the positive development of HESUHPC material properties at the early age, and the increasing amplitude decreases from summer to winter. Three-day mechanical properties in winter (with the lowest curing temperature) still gain more than 60% of the 28-day mechanical properties, and the impact of season temperatures becomes small at the later age. The HESUHPC shrinkage mainly occurs at the early age, and the final shrinkage value is not significant. The HESUHPC-NSC interface exhibits sound shear performance, the interface in most specimens does not fail, and most interfacial shear strengths are higher than the NSC-NSC composite. The HESUHPC-NSC composites at the shear failure do not exhibit a large relative slip and present a significant brittleness at the failure. The typical failures are characterized by thin-layer NSC debonding near the interface, and NSC pure shear failure. Two load-slip development patterns, and two types of main crack location are identified for the HESUHPC-NSC composites tested in different ages and seasons. In addition, shear capacity of the HESUHPC-NSC composite develops rapidly at the early age, and the increasing amplitude decreases as the season temperature decreases. This study will promote the HESUHPC application in practical engineering as a cast-in-place repairing material subjected to different natural environments.

Microstructure and Mechanical Properties at Room and Elevated Temperatures in AM50-0.3 wt%CaO Alloy (AM50-0.3 wt%CaO 합금의 미세조직과 상·고온 기계적 특성)

  • Cho, Eun-Ho;Jun, Joong-Hwan;Kim, Young-Jik
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.499-503
    • /
    • 2012
  • The present study is intended to comparatively investigate the changes in microstructure and tensile properties at room and elevated temperatures in commercial AM50(Mg-5%Al-0.3%Mn) and 0.3 wt%CaO added ECO-AM50 alloys produced by permanent mould casting. The typical microstructure of AM50 alloy was distinctively characterized using two intermetallic compounds, ${\beta}(Mg_{17}Al_{12})$ and $Al_8Mn_5$, along with ${\alpha}$-(Mg) matrix in an as-cast state. The addition of a small amount of CaO played a role in reducing dendrite cell size and quantity of the ${\beta}$ phase in the AM50 alloy. It is interesting to note that the added CaO introduced a small amount of $Al_2Ca$ adjacent to the ${\beta}$ compounds, and that inhomogeneous enrichment of elemental Ca was observed within the ${\beta}$ phase. The ECO-AM50 alloy showed higher hardness and better YS and UTS at room temperature than did the AM50 alloy, which characteristics can be mainly ascribed to the finer-grained microstructure that originated from the CaO addition. At $175^{\circ}C$, higher levels of YS and UTS and higher elongation were obtained for the ECO-AM50 alloy, demonstrating that even 0.3 wt%CaO addition can be beneficial in promoting the heat resistance of the AM50 alloy. The combinational contributions of enhanced thermal stability of the Ca-containing ${\beta}$ phase and the introduction of a stable $Al_2Ca$ phase with high melting point are thought to be responsible for the improvement of the high temperature tensile properties in the ECO-AM50 alloy.

Properties of EMNC and EMNSC for Insulation New Material as Apply to High Voltage Heavy Electric Machine (고압중전기기용 절연신소재 EMNC와 EMNSC의 특성연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1454-1460
    • /
    • 2012
  • In order to develop an new electric insulation material for heavy electric equipments, epoxy/micro/nano composite (EMNC) was prepared by mixing micro-silica with nano layered silicate, where the nano layered silicate was synthesized by our electric field dispersion method, EMNSC was prepared by treating the EMNC with a silane coupling agent. Thermal properties such as glass transition temperature (Tg) and thermal expansion coefficient, and DMA characteristics were studied, and mechanicla properties such as tensile and flexural tests were performed. AC electrical insulation strength was also tested. All properties of EMNSC were modified by treating EMNC with silane coupling agent and it was confirmed that our new developed composites could be used in the heavy electric equipments.