• Title/Summary/Keyword: High temperature properties

Search Result 6,452, Processing Time 0.034 seconds

Measured data of thermophysical properties of concrete for a temperature range of $20^{\circ}C$ to $1100^{\circ}C$ (상온에서 $1100^{\circ}C$까지 온도변화에 따른 콘크리트의 열물성 측정치)

  • Shin, Ki-Yeol;Chung, Mo;Kim, Sang-Baik;Kim, Jong-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.596-606
    • /
    • 1998
  • Thermophysical properties and the compressive strength of concrete used in nuclear power plants in Korea were measured. The chemical composition of the concrete was also analyzed. The measured thermophysical properties include the density, the thermal conductivity, the thermal diffusivity and the specific heat for a wide temperature range of 20.deg. C to 1100.deg. C. The chemical composition of Korean concrete is similar to that of US basaltic concrete and the thermophysical properties are strongly temperature dependent. The density, the conductivity and the diffusivity decrease with an increase in temperature, and particularly the conductivity and the diffusivity are a 50-perdent decrease at 900.deg. C as compared with these values at room temperature. The specific heat increases until 500.deg. C, decreases from 700.deg. C to 900 .deg. C, and then increases again when temperature is above 900.deg. C. The measurement beyond 1100.deg. C is not acceptably accurate because the concrete decomposes to a liquid phase from a solid phase at that temperature. The results of this study can be applied, for example, to an analysis of the molten core-concrete interaction (MCCI) phenomenon of concrete structures at high temperature will also require those property data, especially for high temperature ranges.

Effect of High Temperature on Grain Characteristics and Quality during the Grain Filling Period

  • Chuloh Cho;Han-yong Jeong;Jinhee Park;Yurim Kim;Myoung-Goo Choi;Changhyun Choi;Chon-Sik Kang;Ki-Chang Jang;Jiyoung Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.51-51
    • /
    • 2023
  • Global warming has significant effects on the growth and development of wheat and can cause a reduction in grain yield and quality. Grain quality is a major factor determining the end-use quality of flour and a reduction in quality can result economic losses. Therefore, it is necessary to study the physiological characteristic of wheat to understand its response to temperature elevation, which can aid in the development of strategies to mitigate the negative effects of high temperature and sustain wheat production. This study investigated the effects of elevated temperature on grain characteristics and quality during the grain filling period of two Korean bread wheat cultivars Baekkang and Jokyoung. These two bread wheat cultivars were subjected to an increasing temperature conditions regime; T0 (control), T1 (T0+1℃), T2 (T0+2℃) and T3 (T0+3℃). The results showed that high temperature, particularly in T3 condition, caused a significant decrease in the number of grains per spike and grain yield compared to the T0 condition. The physical properties, such as grain weight and hardness, as well as chemical properties, such as starch, protein, gluten content and SDSS, which affect the quality of wheat, were changed by high temperature during the grain filling period. The grain weight and hardness increased, while the grain size not affected by high temperature. On the other hand, amylose content decreased, whereas protein, gluten content and SDSS increased in T3 condition. In this study, high temperature within 3℃ of the optimal growth temperature of wheat, quantity properties decreased while quality-related prosperities increased. To better understand the how this affects the grain's morphology and quality, further molecular and physiological studies are necessary.

  • PDF

Research Trends of the Mo-Si-B Alloys as Next Generation Ultra-high-temperature Alloys (차세대 초고온 합금인 Mo-Si-B 합금의 연구 동향)

  • Choi, Won June;Park, Chun Woong;Park, Jung Hyo;Kim, Young Do;Byun, Jong Min
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.156-165
    • /
    • 2019
  • Over the last decade, the next generation's ultra-high-temperature materials as an alternative to Nickel-based superalloys have been highlighted. Ultra-high-temperature materials based on refractory metals are one of several potential candidates. In particular, molybdenum alloys with small amounts of silicon and boron (Mo-Si-B alloys) have superior properties at high temperature. However, research related to Mo-Si-B alloys were mainly conducted by several developed countries but garnered little interest in Korea. Therefore, in this review paper, we introduce the development history of Mo-Si-B alloys briefly and discuss the properties, particularly the mechanical and oxidation properties of Mo-Si-B alloys. We also introduce the latest research trends of Mo-Si-B alloys based on the research paper. Finally, for domestic research related to this field, we explain why Mo-Si-B alloys should be developed and suggest the potential directions for Mo-Si-B alloys research.

The Hot Forging of Small Size Gas Turbine Disks (소형가스터빈 디스크의 얼간단조)

  • Cha, D.J.;Song, Y.S.;Kim, D.K.;Kim, Y.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.370-373
    • /
    • 2008
  • Small size gas turbine disk requires good mechanical strength and creep properties at high temperature. In this study, Waspaloy was used as a superalloy to satisfy these specifications. The control of microstructure was needed to satisfy material properties at high temperature. In order to do this, we studied forging conditions and material analysis. Therefore die and preform design conducted so that hot forged gas turbine disk could have a good microstructure. The die and preform shapes are designed with consideration of the predefined hydraulic press capacity and the microstructure of forging product. Also we carried out the hot compression test for Waspaloy in various test conditions. From these results, we obtained the forging conditions as material temperature, die velocity etc. To verify these forging conditions, we conducted FE simulations by means of the DEFORM 2D-HT. In this study, the hot closed die and preform designs were completed to offer high temperature material properties of a small size gas turbine.

  • PDF

Study on Thermal and Structural Properties of Epoxy/Elastomer Blend (에폭시/엘라스토머 블렌드의 열적 및 구조적 특성에 관한 연구)

  • Lee Kyoung-Yong;Lee Kwan-Woo;Choi Yong-Sung;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.556-560
    • /
    • 2004
  • In this paper, thermal and structural properties of epoxy/elastomer blend were measured by DSC, TGA and FESEM. Specimens were made of dumbbell forms by the ratio of 5, 10, 15, and 20[phr] by changing elastomer content. The measuring temperature ranges of DSC were from -20[℃] to 150[℃] and heating rate was 4[℃/min]. And the measuring temperature ranges of TGA were from 0[℃] to 800[℃], and heating rate was 5[℃/min]. Also we observed structure of specimens through FESEM with magnification of 1000 times and voltage of 15[kV] by breaking quenched specimens. As experimental results, we could know that thermal and structural properties were improved according to decrease of elastomer content. Because it increased glass transition temperature, high temperature and structure of elastic epoxy.

Current Status of Research on Thermal and Mechanical Properties of Rock under High-Temperature Condition (고온 조건하 암석의 열적·역학적 물성에 대한 연구현황)

  • Lee, Changsoo;Park, Jung-Wook;Park, Chulwhan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.1-23
    • /
    • 2015
  • In this technical report we summarize the observational data on thermal and mechanical properties of rocks reported by over 70 best published papers. The experimental results reported individually are integrated and presented in tables and figures here, which will provide fundamental data to fairly determine and evaluate the rock properties at the initial design stage of underground structures exposed to high temperature environment.

A Study on the Plate-Type Polymer Hyperfine Pit Structure Fabrication and Mechanical Properties Measurement by Using Thermal-Nanoindentation Process (열간나노압입공정을 이용한 극미세 점구조체 제작을 위한 플라스틱소재 판의 기계적 특성 조사)

  • Lee, E.K.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.633-642
    • /
    • 2008
  • It's important to measure quantitative properties about thermal-nano behavior of polymer for producing high quality components using Nanoimprint lithography process. Nanoscale indents can be used to make the cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. In this study, formability of polymethylmetacrylate(PMMA) and polycarbonate(PC) were characterized Polymer has extreme variation in thermo mechanical variation during forming high temperature. Because of heating the polymer, it becomes softer than at room temperature. In this case it is particularly important to study high temperature-induced mechanical properties of polymer. Nanoindenter XP(MTS) was used to measure thermo mechanical properties of PMMA and PC. Polymer was heated by using the heating stage on NanoXP. At CSM(Continuous Stiffness Method) mode test, heating temperature was $110^{\circ}C,120^{\circ}C,130^{\circ}C,140^{\circ}C$ and $150^{\circ}C$ for PMMA, $140^{\circ}C,150^{\circ}C,160^{\circ}C,170^{\circ}C$ and $180^{\circ}C$ for PC, respectively. Maximum indentation depth was 2000nm. At basic mode test, heating temperature was $90^{\circ}C$ and $110^{\circ}C$ for PMMA, $140^{\circ}C,160^{\circ}C$ for PC. Maximum load was 10mN, 20mN and 40mN. Also indented pattern was observed by using SEM and AFM. Mechanical properties of PMMA and PC decreased when temperature increased. Decrease of mechanical properties from PMMA went down rapidly than that of PC.

Absorption and Thermal Properties According to Ionic Impurities of Semiconductive Materials for Underground Power Cable (지중 전력케이블용 반도전재료의 이온성 불순물에 따른 흡습 및 열적특성)

  • Lee, Kyoung-Yong;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.133-137
    • /
    • 2004
  • In this paper, we investigated impurities content, absorption properties, and thermal properties showing by changing the content of carbon black which is semiconductive materials for underground power transmission. Specimens were made of sheet form with the three of existing resins and the nine of specimens for measurement. Impurities content of specimens and absorption properties were measured by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer) and Karl Fisher. And high temperature, heat degradation initiation temperature, and heat weight loss were measured by TGA (Thermogravimetric Analysis). The dimension of measurement temperature was 0$[^{\circ}]$ to 800$[^{\circ}]$, and rising temperature was 10$[^{\circ}/min]$. Impurities content was highly measured according to increasing the content of carbon black from this experimental result also absorption amount was increased according to these properties. Specially, impurities content values of the A1 and A2 of existing resins were measured more than 4000[ppm]. Heat degradation initiation temperature from the TGA results was decreased according to increasing the content of carbon black. All over, heat stabilities were EEA>EBA>pEVA. That is, heat stabilities of EVA containing the weak VA(vinyl acetate) against heat was measured the lowest.

  • PDF

The Effect of Thermal Exposure on the Microstructural Evolution and Tensile Properties in Cast Hastelloy X (Hastelloy X 주조재의 열간 노출에 따른 미세조직 및 인장 특성 변화)

  • Choi, Baig Gyu;Kim, In Soo;Do, Jeonghyeon;Jung, Joong Eun;Jung, In Yong;Hong, Hyun Uk;Jo, Chang Yong
    • Journal of Korea Foundry Society
    • /
    • v.37 no.5
    • /
    • pp.139-147
    • /
    • 2017
  • Microstructural evolution of cast Hastelloy X during thermal exposure has been investigated. OM, SEM, and TEM microscopy were carried out on the as-cast, the standard heat treated, and the thermally exposed conditions. Tensile tests were also conducted to understand the effect of microstructural evolution on the degradation of tensile properties. Coarse $M_6C$ and fine $M_{23}C_6$ carbides were found in as-cast Hastelloy X with fine carbides on sub-boundary. Some of $M_{23}C_6$ carbide dissolved into the matrix during solution heat treatment and dislocation network formed at the interface between the carbide and the matrix due to the misfit strain. There was no significant microstructural difference between the exposed specimens at $400^{\circ}C$ and the solution heat treated specimen. A large amount of $M_{23}C_6$ carbides precipitated along and near grain boundaries and sub-boundaries after exposure at $650^{\circ}C$. Exposure at $870^{\circ}C$ of the alloy caused precipitation of $M_6C$ and ${\mu}$. The strength increased and the elongation decreased by thermal exposure at $650^{\circ}C$ and $870^{\circ}C$ because carbides interfere with the movement of the dislocation. It was found that the precipitation of carbide gave significant effects on the tensile properties of Hastelloy X.