• Title/Summary/Keyword: High temperature mechanical properties

Search Result 1,848, Processing Time 0.028 seconds

Hyper-peritectic Al-Ti Alloys as In-Situ composites through Rapid Solidification (급냉응고법에 의한 In-Situ 복합재료로서의 과포정 Al-10wt%Ti 합금(I))

  • Kim, Hye-Seong;Geum, Dong-Hwa;Kim, Geung-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.263-268
    • /
    • 1999
  • In this study, a new concept of aluminum-matrix composites and the possibility of in-situ processing are suggested, and preliminary results on AI- Ti system are presented. Fine powders of AI-lO% Ti were prepared by the gas atomization so that fine $Al_3Ti$ formed into flake shape. A 25v/o $Al_3Ti/Al$ composite sample was made by the pow­d er metallurgy process involving hot extrusion. Microstructure and mechanical behavior both at room temperature and high temperatures were analysed by OM, SEM, TEM and tension test. Microstructural characteristics and mechanical properties of the composites exhibited similar behavior to those of $SiC_w/2124$ composites. Merits and drawbacks of the $Al_3Ti/Al$ composites are discussed together with a possibility of further improvement.

  • PDF

Fabrication and Mechanical Properties of WC-Mo2C-Co Hard Materials by the Pulsed Current Activated Sintering Method (펄스 전류 활성 소결법을 이용한 WC-Mo2C-Co 소결체 제조 및 기계적 특성 평가)

  • Youn, Hee-Jun;Bang, Han-Sur;Bang, Hee-Seon;Oh, Ik-Hyun;Park, Hyun-Kuk
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.921-929
    • /
    • 2012
  • The pulsed current activated sintering method (PCAS) is a new rapid sintering method that was developed recently for fabricating ceramics and composites. This method combines a high temperature for a short time with pressure application. In this work, PCAS was used to fabricate $WC-5wt%Mo_2C-5wt%$ Co hard material using WC, $Mo_2C$, and Co. The $WC-Mo_2C-Co$ was almost completely dense with a relative density of up to 100% after the simultaneous application of a pressure of 60 MPa and electric current for 11 min without grain growth. The average grain size of WC that was produced through PCAS was about $0.5-0.6{\mu}m$. The vickers hardness and fracture toughness of the $WC-5wt%Mo_2C-5wt%$Co hard materials were about $2453.5kg/mm^2$ and $7.9MPa{\cdot}m^{1/2}$, respectively, for 60 MPa at $11200^{\circ}C$.

Surface Modification and Bioactivity Improvement of 3Y-TZP Substrate by Spray Coating of Hydroxyapatite/Fosterite Composite Powder (하이드록시아파타이트/포스터라이트 복합분말의 분사코팅에 의한 3Y-TZP 기판의 표면개질과 생체활성 증진)

  • Yu Hyeon Yun;Jong Kook Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.337-343
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials' resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they've been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3Y-TZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.

Effects of Basalt Fiber on the Mechanical Properties of Secondary Barrier for LNG Cargo Containment System (현무암섬유를 이용한 LNG 화물창 2차 방벽의 기계적 특성에 대한 연구)

  • Woo-Seung Noh;Hae-Reum Shin;Seung-June Yeo;Man-Tae Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.207-212
    • /
    • 2024
  • Recently, with the strengthening of environmental regulations, there has been an increasing interest in eco-friendly energy sources, leading to a trend of the increasing scale of Cargo Containment Systems (CCS) for Liquefied Natural Gas (LNG) carriers. Among these systems, membrane tanks have gained popularity in LNG transport vessels due to their superior spatial utilization and competitiveness. However, due to high initial investment costs and the difficulty in repair in case of damage, a safety layer, the secondary barrier, must be installed without fail. In this study, in order to apply a new secondary barrier to the existing membrane-type LNG CCS, tests were conducted on the fiberglass layer previously used in the Triplex-Flexible Secondary Barrier (FSB), substituting it with basalt fiber. Tensile and vertical tensile tests were performed to assess the newly applied material. Environmental tests were conducted at room temperature (25℃) and extremely low temperatures (-170℃), considering the temperatures to which substances may be exposed during LNG vessel operations. The basalt-FSB produced in this study demonstrated superior results compared to the specifications of the existing product, confirming its potential applicability for implementation.

Evaluation of Adhesive Strength for Nano-Structured Thin Film by Scanning Acoustic Microscope (초음파 현미경을 이용한 나노 박막의 접합 강도 평가)

  • Park, Tae-Sung;Kwak, Dong-Ryul;Park, Ik-Keun;Miyasaka, Chiaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.393-400
    • /
    • 2012
  • In recent years, nano-structured thin film systems are often applied in industries such as MEMS/NEMS device, optical coating, semiconductor or like this. Thin films are used for many and varied purpose to provide resistance to abrasion, erosion, corrosion, or high temperature oxidation and also to provide special magnetic or dielectric properties. Quite a number of articles to evaluate the characterization of thin film structure such as film density, film grain size, film elastic properties, and film/substrate interface condition were reported. Among them, the evaluation of film adhesive to substrate has been of great interest. In this study, we fabricated the polymeric thin film system with different adhesive conditions to evaluate the adhesive condition of the thin film. The nano-structured thin film system was fabricated by spin coating method. And then V(z) curve technique was applied to evaluate adhesive condition of the interface by measuring the surface acoustic wave(SAW) velocity by scanning acoustic microscope(SAM). Furthermore, a nano-scratch technique was applied to the systems to obtain correlations between the velocity of the SAW propagating within the system including the interface and the shear adhesive force. The results show a good correlation between the SAW velocities measured by acoustic spectroscope and the critical load measured by the nano-scratch test. Consequently, V(z) curve method showed potentials for characterizing the adhesive conditions at the interface by acoustic microscope.

Optimum Mixing Ratio of Epoxy for Glass Fiber Reinforced Composites with High Thermal Stability (에폭시 배합비에 따른 내열성 복합재료 최적조건)

  • Shin, Pyeong-Su;Wang, Zuo-Jia;Kwon, Dong-Jun;Choi, Jin-Yeong;Sung, Ill;Jin, Dal-Saem;Kang, Suk-Won;Kim, Jeong-Cheol;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.168-173
    • /
    • 2014
  • The optimum condition of glass fiber/epoxy composites was investigated according to mixing ratio of two epoxy matrices. Novolac type epoxy and isocyanate modified epoxy were used as composites matrix. Based on chemical composition of mixing matrix, optimum mixing ratio of epoxy resins was obtained through various experiments. In order to investigate thermal stability and interface of epoxy resin, glass transition temperature was observed by DSC instrument, and static contact angle was measured by reflecting microscope. Change of IR peak and $T_g$ was conformed according to different epoxy mixing ratio. After fabrication of glass fiber/epoxy composites, tensile, compression, and flexural properties were tested by UTM by room and high temperature. The composites exhibited best mechanical properties when epoxy mixing ratio was 1:1.

The Frost Heaving Characteristics of Subgrade Soils Using Laboratory Freezing System (실내동결시스템을 이용한 노상토의 동상 특성)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing system test simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the road structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this Paper, the evaluation of frost susceptibility was conducted by means of the mechanical property test and laboratory freezing system apparatus. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade soils of highway construction site, were measured to determine the frost susceptibility.

Physico-mechanical Properties and Optimum Manufacturing Conditions of Bi-Sn Metal Alloy Impregnated Wood Composites (Bi-Sn 용융합금주입 목재복합체의 최적제조조건 및 물리·기계적 특성)

  • Park, Kye-Shin;Lee, Hwa-Hyoung;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.691-699
    • /
    • 2014
  • In order to improve the dimensional stability and durability of wood, this study attempted to impregnate bismuth (Bi) - tin (Sn) alloy metal with low melting temperature into solid woods of three species such as radiata pine, red oak and white oak, and investigated to determine an optimum condition of manufacturing the metal alloy-wood composites with natural wood grains. These Bi-Sn alloys were chosen for this study because they were harmless to human and melting at low temperatures. The composites resulted in high dimensional stability and low thickness swelling, and also showed much improved performance such as high bending strength, high hardness, high electric conductivity, and high thermal conductivity as floor materials. A proper impregnating condition of all specimens was determined as 10 minutes of the preliminary vacuum time, and $185^{\circ}C$ of the heating temperature. The proper processing condition for radiata pine wood was 2.5 minutes of the pressuring time at the pressure of $10kgf/cm^2$. For red oak wood, 10 minutes of the pressuring time at the pressure of $30kgf/cm^2$ were the proper condition. The proper manufacture conditions for white oak wood was determined as 10 minutes of the pressuring time at the pressure of $50kgf/cm^2$.

Development of CNT-dispersed Si3N4 Ceramics by Adding Lower Temperature Sintering Aids

  • Matsuoka, Mitsuaki;Yoshio, Sara;Tatami, Junichi;Wakihara, Toru;Komeya, Katsutoshi;Meguro, Takeshi
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.333-336
    • /
    • 2012
  • The study to give electrical conductivity by dispersing carbon nanotubes (CNT) into silicon nitride ($Si_3N_4$) ceramics has been carried out in recent years. However, the density and the strength of $Si_3N_4$ ceramics were degraded and CNTs disappeared after firing at high temperatures because CNTs prevent $Si_3N_4$ from densification and there is a possibility that CNTs react with $Si_3N_4$ or $SiO_2$. In order to suppress the reaction and the disappearance of CNTs, lower temperature densification is needed. In this study, $HfO_2$ and $TiO_2$ was added to $Si_3N_4-Y_2O_3-Al_2O_3$-AlN system to fabricate CNT-dispersed $Si_3N_4$ ceramics at lower temperatures. $HfO_2$ promotes the densification of $Si_3N_4$ and prevents CNT from disappearance. As a result, the sample by adding $HfO_2$ and $TiO_2$ fired at lower temperatures showed higher electrical conductivity and higher bending strength. It was also shown that the mechanical and electrical properties depended on the quantity of the added CNTs.

A study on fracture toughness of welded joint and orientation in TMCP steel by th SP test (SP시험에 의한 TMCP강의 방향성 및 용접부의 파괴인성에 관한 연구)

  • 유효선;안병국;류대영;정세희
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.35-43
    • /
    • 1998
  • In this paper, the fracture toughness evaluation of the various microstructures such as HAZ, F.L and W.M in weldment of TMCP steel which has the softening zone owing to high heat input welding was carried out by using of the small punch(SP) test. In addition, the fracture toughness with the specimen orientation of rolled TMCP steel was investigated by means of SP test and the crack opening displacement (COD) test and then was compared with that of conventional SM50YB steel. From the results of SP test for TMCP steel, it could be seen that the SP energy transition curves of three different orientation were shifted to higher temperature side in order of S, T and L. But the {TEX}$DBTT_{SP}${/TEX} of each orientation specimen did not show a lot of differences and were quite lower than those of conventional SM50YB steel. The mechanical properties of HAZ structure in weldment of TMCP steel such as hardness, SP energy at room temperature and -196$^{\circ}C$ and the upper shelf energy of SP energy transition curve were lower than those of base metal due to softening. The {TEX}$DBTT_{SP}${/TEX} of each microstructure in weldment of TMCP steel increased in order of HAZ, F.L and W.M against base metal, but all microstructures showed a quite lower {TEX}$DBTT_{SP}${/TEX} than those of SM50YB steel.

  • PDF