DOI QR코드

DOI QR Code

Fabrication and Mechanical Properties of WC-Mo2C-Co Hard Materials by the Pulsed Current Activated Sintering Method

펄스 전류 활성 소결법을 이용한 WC-Mo2C-Co 소결체 제조 및 기계적 특성 평가

  • Youn, Hee-Jun (Korea Institute of Industrial Technology (KITECH), Automotive Components Group) ;
  • Bang, Han-Sur (Department of Naval Architecture and Ocean Engineering, Chosun University) ;
  • Bang, Hee-Seon (Department of Naval Architecture and Ocean Engineering, Chosun University) ;
  • Oh, Ik-Hyun (Korea Institute of Industrial Technology (KITECH), Automotive Components Group) ;
  • Park, Hyun-Kuk (Korea Institute of Industrial Technology (KITECH), Automotive Components Group)
  • 윤희준 (한국생산기술연구원 동력부품연구그룹) ;
  • 방한서 (조선대학교 선박해양공학과) ;
  • 방희선 (조선대학교 선박해양공학과) ;
  • 오익현 (한국생산기술연구원 동력부품연구그룹) ;
  • 박현국 (한국생산기술연구원 동력부품연구그룹)
  • Received : 2011.10.17
  • Published : 2012.12.25

Abstract

The pulsed current activated sintering method (PCAS) is a new rapid sintering method that was developed recently for fabricating ceramics and composites. This method combines a high temperature for a short time with pressure application. In this work, PCAS was used to fabricate $WC-5wt%Mo_2C-5wt%$ Co hard material using WC, $Mo_2C$, and Co. The $WC-Mo_2C-Co$ was almost completely dense with a relative density of up to 100% after the simultaneous application of a pressure of 60 MPa and electric current for 11 min without grain growth. The average grain size of WC that was produced through PCAS was about $0.5-0.6{\mu}m$. The vickers hardness and fracture toughness of the $WC-5wt%Mo_2C-5wt%$Co hard materials were about $2453.5kg/mm^2$ and $7.9MPa{\cdot}m^{1/2}$, respectively, for 60 MPa at $11200^{\circ}C$.

Keywords

References

  1. F. L. Zhang, C. Y. Wang, and M. Zhu, Scr. Mater. 49, 1123(2003). https://doi.org/10.1016/j.scriptamat.2003.08.009
  2. K. Jia, T. E. Fischer, and G. Gallois, Nanostruct. Mater. 10, 875 (1998). https://doi.org/10.1016/S0965-9773(98)00123-8
  3. J. H. Han and D. Y. Kim, Acta Mater. 46, 2021 (1998). https://doi.org/10.1016/S1359-6454(97)00442-4
  4. I. K. Jeong, J. H. Park, J. M. Doh, K. Y. Kim, K. D. Woo, I. Y. Ko, and I. J. Shon, J. Kor. Inst. Met. & Mater. 46, 223 (2008).
  5. E. A. Almond, B. Pham, J. Guille, and H. Dunlop, J. Catalysis 134, 383 (1992). https://doi.org/10.1016/0021-9517(92)90329-G
  6. H. C. Kim, Ph D. Thesis, pp. 15-79, Chonbuk National University, Chonbuk (2005).
  7. H. C. Kim, H. K. Park, I. K. Jung, I. Y. Ko, and I. J. Shon, Cermics Int. 34, 1419 (2008). https://doi.org/10.1016/j.ceramint.2007.03.029
  8. K. Jia, T. E. Fischer, and G. Gallois, Nanostruct Mater. 10, 875 (1998). https://doi.org/10.1016/S0965-9773(98)00123-8
  9. K. Kia, T. E. Fischer, and G. Gallois, Nanostruct Mater. 10, 875 (1998). https://doi.org/10.1016/S0965-9773(98)00123-8
  10. J. H. Hang and D. Y. Kim, Acta Mater. 46, 2021 (1998). https://doi.org/10.1016/S1359-6454(97)00442-4
  11. E. A. Almond, B. Pham, J. Guille, and H. Dunlop, J. Catalysis 134, 383 (1992). https://doi.org/10.1016/0021-9517(92)90329-G
  12. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  13. I. Y. Ko, N. R. Park, S. H. Oh, and I. J. Shon, Korean J. Met. Mater. 49, 608 (2011).
  14. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  15. J. E. Garay, U. A. Tamburini, Z. A. Munir, S. C. Glade, and P. A. Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  16. J. R. Friedman, J. E. Garay. U. A. Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  17. J. E. Garay, U. A. Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  18. R. L. Coble, J. Appl. Phys. 41, 4798 (1970). https://doi.org/10.1063/1.1658543
  19. H. C. Kim, I. J. Shon, I. K. Jeong, and I. Y. Ko, Metals and Mat. Inter. 12, 393 (2006). https://doi.org/10.1007/BF03027705
  20. P. Scherrer and N. G. W. Gottingen, Math-Pys. Kl. 2, 96 (1918).
  21. L. S. Sigl, Fischme ister HF., Acta Metall. 36, 887 (1988). https://doi.org/10.1016/0001-6160(88)90143-5
  22. L. S. Sigl, P. A. Mataga, B. J. Dalgleish, R. M. McMeeking, and A. G. Evans, Acta Metall. 36, 945 (1988). https://doi.org/10.1016/0001-6160(88)90149-6
  23. H. Engqvist, G. A. Botton, N. Axen, and S. Hogmark, J. Am. Ceram. Soc. 83, 2491 (2000).
  24. C. D. Park, H. C. Kim, I. J. Shon, and Z. A. Munir, J. Am. Ceram. Soc. 85, 2670 (2002).