• Title/Summary/Keyword: High temperature history

Search Result 190, Processing Time 0.022 seconds

Modeling of temperature history in the hardening of ultra-high-performance concrete

  • Wang, Xiao-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.273-284
    • /
    • 2014
  • Ultra-high-performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder ratios are 0.15 to 0.20 with 20 to 30% silica fume. In the production of ultra-high performance concrete, a significant temperature rise at an early age can be observed because of the higher cement content per unit mass of concrete. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of ultra-high performance concrete. The heat evolution rate of UHPC is determined from the contributions of cement hydration and the pozzolanic reaction. Furthermore, by combining a blended-cement hydration model with the finite-element method, the temperature history in the hardening of UHPC is evaluated using the degree of hydration of the cement and the silica fume. The predicted temperature-history curves were compared with experimental data, and a good correlation was found.

Compressive Strength Properties of high strength concrete considering Adiabatic temperature rise of hot weather environment (서중환경의 단열온도상승 특성을 고려한 고강도 콘크리트의 압축강도 특성)

  • Lee, Eun Kyoung;Ham, Eun-Young;Koo, Kyung-Mo;Lee, Bo-Kyeong;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.56-57
    • /
    • 2013
  • In this study, in regard to concrete considering variety of admixture content rate, we evaluated property of adiabatic temperature rise. By setting up high temperature history, we evaluated effect to compression strength property of high strength concrete by early high temperature history. As a result, early high temperature history accelerated Hydration reaction of cement and contribute early strength development but it didn't accomplish performance objective in long-term aged.

  • PDF

The Effect of Properties of The Compressive Strength of High-Strength Concrete under High Temperature conditions at an Early Age (초기고온이력이 고강도콘크리트의 압축강도특성에 미치는 영향)

  • Ham, Eun-Young;Kim, Gyu-Yong;Koo, Kyung-Mo;Yoon, Min-Ho;Yoo, Jea-Kang;Miyauchi, Hiroyuki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.115-116
    • /
    • 2013
  • Property of the compressive strength of high strength concrete was investigated in adiabatic temperature history considering hot-weather conditions. As a result, compressive strength of specimens subjected to high temperature history showed more than 120% at 3days of age compare to standard cured specimens. But, at 91days of age showed the incidence of strength less than 100%.

  • PDF

Evaluation on Temperature History and Residual Compressive Strength of Heated Ultra High Strength Concrete Column according to the Fine Aggregate Type (가열을 받은 초고강도 콘크리트 기둥부재의 잔골재 종류에 따른 내부온도이력 및 잔존압축강도 평가)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Shin, Kyoung-Su;Choe, Gyoeng-Choel;Lee, Bo-Kyeong;Miyauchi, Hiroyuki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.91-92
    • /
    • 2013
  • The strength of ultra-high-strength concrete can be reduced even if the spalling is prevented at a high temperature. Therefore, in this study, we measured internal temperature history and residual compressive strength using a 300×300×450mm short column specimens which use the fiber(NY 0.15+PP 0.10+SF 0.30vol·%) and respectively silica sand, washed sand, the slag sand. As a result, the temperature history and residual compressive strength are almost similar regardless of the fine aggregate types.

  • PDF

An Experimental Study of Precast concrete Alters Cement Types of High-Strength Concrete (시멘트종류를 변화시킨 프리캐스트 고강도 콘크리트의 실험적 연구 - 수화열 온도특성을 중심으로 -)

  • Park, Heung-Lee;Kim, Sung-Jin;Paik, Min-Su;Lee, Seung-Hoon;Park, Byung-Keun;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.119-122
    • /
    • 2009
  • As architectures have recently become high-risers and mega-structured, stable high strength products have been ensured. Accordingly, use of precast concrete accouplement has been increased in order to facilitate air compression and rationalize construction. Since not only external heating but a1so internal temperature rise caused by the accumulation of cement hydration heat in manufacturing process, precast concrete members with large cross-section used for high-rise mega-structure's columns and beams may exhibit different temperature history compared to the precast concrete members for wall and sub-floor with relatively small cross-sections. Therefore, this study aims to elucidate the characteristics of temperature history of mass concrete members cast with high-strength concrete fur precast concrete application. In this study, large cross-sectional precast concrete mock-up, unit cement quantity, and temperature histories in manufacturing precast concrete member under different curing condition were inclusively investigated.

  • PDF

Properties of Temperature History and Spatting Resistance of High Performance RC Column with Finishing Material (내화 마감재 종류에 따른 고성능 RC기둥의 폭열방지 및 온도이력 특성)

  • Heo Young-Sun;Kim Ki-Hoon;Lee Jin-Woo;Lee Bo-Hyeung;Lee Jae-Sam;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.37-40
    • /
    • 2005
  • High Performance Concrete(HPC) has been widely used in high-rise building. The HPC has several benefits including high strength, high fluidity and high durability. However. spatting is susceptible to occur in HPC and HPC also tends to be deteriorated in the side of fire resistance performance at fire. This paper focuses on the analysis of the temperature history and residual compressive strength with finishing material, in order to protect HPC from sudden-high-temperature, which is one of the main reason spatting occurs. Test results show that spalling occurs in all specimens. The most serious spalling took placed in HPC covering fire enduring spray-on material, whose covering thickness is 20mm but temperature history indicates that fire enduring spray effectively protected HPC from fire for more than 2hours. In addition, residual compressive strength ratio of HPC using fire enduring paint was more than $90\%$ of original strength, thus minimizing spatting and indicating significant fire resistance performance.

  • PDF

An Effects of the Strength Development of High Strength Mortar under Temperature History by Steam Curing (촉진양생에 의한 온도이력이 고강도 모르타르의 강도발현에 미치는 영향)

  • Kwon, Hee-Sung;Choi, Eung-Kyu;Lim, Nam-Ki;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.115-121
    • /
    • 2008
  • The present study performed low-pressure steam curing with mortar specimens in order to examine the temperature profile and strength development of steam curing in high-strength specimens of 100MPa. In addition, as a basic research to utilize PC products, we examined the effects of curing temperature and time in steam curing cycle on strength development resulting from the hydration of cement within the range of high strength by changing four factors affecting the quality of PC displacement time, peak curing temperature, peak temperature duration, and ascending and descending gradient of temperature - in various patterns, and analyzed the optimal strength development characteristic based on the relation between temperature profile and strength development. With regard to the high-temperature curing characteristic of PC, we performed an experiment on the strength characteristic according to the temperature profile of high-strength mortar, and from the results of the experiment according to curing characteristic, displacement time, peak curing temperature, peak temperature duration, and ascending and descending gradient of temperature, we drew conclusions as follows.

An Experimetal Study on Strength Characteristics of Mass Concrete Cast with High-Strength Concrete for Precast Application. (프리캐스트 콘크리트 적용을 위한 고강도 매스 콘크리트 부재의 강도 특성에 관한 실험적 연구)

  • Park, Jo-Hyun;Kim, Sung-Jin;Paik, Min-Su;Lee, Seung-Hoon;Park, Byung-Keun;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.49-52
    • /
    • 2007
  • Recently, as architectural concrete structures become high-rise and megastructured, concrete become high-strengthened and, by ensuring products of more stability, air compression and rationalization of construction are required. In general, product management test of precast concrete member, specimen for management cured in the same condition with precast concrete member is substitutively used for strength test. However, large cross-sectional precast concrete members such as columns show large temperature increase in manufacturing process not only by external heating but also by concrete itself's hydration heating. Therefore, it is expected that specimen for management to predict strength and compression strength of precast concrete member shows different temperature history and strength characteristics. Concerning this, in order to suggest temperature history and strength characteristics of high strength mass concrete suitable for precast concrete application, this study comprises the inclusive investigations on the relations between management specimen with similar temperature history and core strength, and the strength characteristics per member cross-section dimensional value and per water-bonding material ratio value.

  • PDF

An experimental Study on the Strength Control of High Fluidity Concrete by Maturity (적산온도방식에 의한 고유동콘크리트의 강도관리에 관한 실험적 연구)

  • 김무한;남재현;김규용;길배수;한장현
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.79-87
    • /
    • 2000
  • The strength development of concrete is influenced by temperature and cement type which greatly affect hydration degree of cement. There is not pertinent concrete strength management methods for estimating the in-place strength of concrete. One such method is the maturity concept. The maturity concept is based on the fact that concrete gains strength with time as a result of the cement hydration and, thus the rate of hydration, as in any chemical reaction, depends primarily on the concrete temperature during hydration. Thus, the strength of concrete is function of its time-temperature history. This goals of the present study are to investigate a relationship between strength of high-fluidity concrete and maturity that is expressed as a function of an integral of the curing period and temperature, predict strength of concrete.

Bending Creep and Creep Facture of Alumina under High-Temperature (알루미나의 고온 굽힘 크리프 및 크리프 파괴)

  • 김지환;권영삼;김기태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.167-174
    • /
    • 1994
  • The creep behavior and creep fracture of alumina at high temperature were investigated under four point flexural test. The steady-state creep behavior was observed at low bending stress and the primary creep until fracture was observed at high bending stress. The loading history of bending stress did not affect on the steady-stated creep rate. Intergranular fracture was dominant for fracture of alumina at room and high temperature. However, transgranular fracture was dominant on creep fracture of alumina under high temperature by nuclueation and growth of microcracks due to residual flaws or cavities in the material.

  • PDF