• Title/Summary/Keyword: High temperature NaCl

Search Result 296, Processing Time 0.025 seconds

Transport Coefficients and Effect of Corrosion Resistance for SFRC (강섬유 보강 콘크리트의 수송계수 및 부식저항효과)

  • Kim, Byoung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.867-873
    • /
    • 2010
  • This study investigated the corrosion properties of reinforced concrete with the addition of steel fibers. The transport properties of steel fiber-reinforced concrete such as permeable void, absorption by capillary action, water permeability and chloride diffusion were first measured to evaluate the relationship with the corrosion of steel rebar. Test results showed a slight increase on the compressive strength with the addition of steel fibers as well as considerable improvement of penetration resistance to mass transport of harmful materials into concrete. The addition of steel fibers in reinforced concrete accelerated the initiation of steel corrosion contrary to the expected results based on the measured transport properties. The NaCl ponding surface showed the spalling failure due to the corrosion expansion of steel fibers and the cut-surface around the steel rebar showed the localized steel fiber's corrosion. The wet-dry cycling with high chloride ions as well as high temperature seems to induce the increase of salt crystallization on the pores continually and the increased pressure with the steel fiber's corrosion on the pores caused the spalling failure on the exposed surface. The microcracking on the surface therefore accelerated the movement of water, chloride ions and oxygen into the embedded steel rebar. The mechanism affecting corrosion of embedded steel reinforcement with steel fibers in this study are not yet fully understood and require further study comprising of accurate experimental design to isolate the effect of steel fiber's potential mechanism on the corrosion process.

Characteristics of the Leaf Fiber Plants Cultivated in Korea (국내 재배 엽맥섬유의 특성에 관한 연구)

  • Lee, Hye-Ja;Kim, Nam-Eun;Yoo, Hye-Ja;Han, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.5
    • /
    • pp.711-720
    • /
    • 2009
  • Leaf fibers have many good properties; they are strong, long, cheap, abundant and bio-degradable. Since they, however, contain a great quantity of non-cellulose components, they have been used for the materials of mats, ropes, bags and nets rather than those of clothing. In this study, we investigated the characteristics of leaf fibers in order to promote the use of leaf fibers for the materials of clothing as well as develop the high value-added textile fibers. Leaf fiber plants including New Zealand Flax, Henequen and Banana plant, which have various nature and shape, were used. New Zealand Flax and Henequen leaves were cut from lower part of plants. Banana leaves and pseudo-stems were peeled and cut from the stem of Banana plants. First, the thin outer skins like film of leaves, veins and stems were removed before retting. The chemical retting had been processed for 1hour, at 100 in 0.4% $H_2SO_4$ aqueous solution(liquid ratio 50:1). Then, the retted leaf fibers had been soaked for 1hour, at room temperature in 0.5% NaClO solution(v/v) to remove the miscellaneous materials. We investigated the physical characteristics of three leaf fibers including the transversal and longitudinal morphology, the contents(%) of pectin, lignin and hemicellulose, the length and diameter of fibers, the tensile strength of the fiber bundles, and the fiber crystallinity and the moisture regain(%). The lengths of fiber from three leaf fibers were similar to their leaf lengths. The fiber bundles were composed of the cellulose paralleled to the fiber axis and the non-cellulose intersecting at right angle with the fiber axis. The diameters of New Zealand Flax, Henequen and Banana fibers were $25.13{\mu}m$, $18.16{\mu}m$ and $14.01{\mu}m$, respectively and their tensile strengths were 19.40 Mpa, 32.16 Mpa and 8.45 Mpa, respective. The non-cellulose contents of three leaf fibers were relatively as high as 40%. If the non-cellulose contents of leaf fibers might be controlled, leaf fibers could be used for the materials of textile fiber, non-wovens and Korean traditional paper, Hanjee.

Fluorescence Anisotropy Study on the Effect of Phellodendri Cortex's Berberine on Regulation of the Function of DNA (황백(黃柏)의 berberine이 DNA의 기능조절에 미치는 영향에 관한 형광이방성 연구)

  • Lee, Seong Kyung;Han, Hyo Sang;Huh, Sung Ho
    • The Korea Journal of Herbology
    • /
    • v.33 no.5
    • /
    • pp.105-110
    • /
    • 2018
  • Objectives : We tried to observe the fluorescence anisotropy and intensity of ethidium ion in the intercalating binding interaction between DNA and ethidium ions in the presence of berberine, and then tried to explain the effect of berberine on the intercalating interaction of ethidium ion with DNA. Methods : DNA(calf thymus DNA), berberine and ethidium bromide(EtBr) were purchased from Sigma-Aldrich Co. Proper amount of each compound was dissolved in 20 mM sodium phosphate buffer(pH 7.0) containing 100 mM of NaCl to prepare stock solutions. Collections of the fluorescence anisotropy and intensity data were performed on JASCO FP-8300 spectrofluorometer equipped with a polarizer and a Peltier temperature controller. The excitation of ethidium ion was done at 550 nm and the emission data were collected at 600 nm. For Stern-Volmer plot, the fluorescence data were collected at $18^{\circ}C$ and $30^{\circ}C$. Results : According to the results of this research, the weak competitive binding pattern between ethidium ion and berberine appeared in binding with DNA at low ratio of DNA to ethidium ion. But at high ratio of DNA to ethidium ion, this weak competition disappeared. Instead, berberine might bind to DNA by intercalating way. In other words, berberine could de-intercalate ethidium ion from DNA at low concentration of DNA relative to ethidium ion, but could not at high concentration of DNA relative to ethidium ion. In addition, the mechanism of fluorescence quenching of ethidium ion could also proceed differently, depending on the ratio of the amount of DNA to that of ethidium ion. Conclusions : The effect of berberine on the DNA-ethidium ion intercalating interaction could work differently, depending on the relative ratio of the amount of DNA to that of ethidium ion. This study also showed that fluorescence anisotropy analysis is very useful method to obtain detailed information for investigation of the complex binding interactions. In order to fully understand the mechanism of action of the pharmacological effect by berberine, studies on the effect of berberine on the action of proteins such as various enzymes closely related to berberine-induced medicinal effects should be continued.

Fluid Inclusion and Stable Isotope Studies of the Kwangsin Pb-Zn Deposit (광신 연 - 아연 광상의 유체포유물 및 안정동위원소 연구)

  • Choi, Kwang-Jun;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.505-517
    • /
    • 1997
  • Lead and zinc mineralization of the Kwangsin mine was formed in quartz and carbonate veins that filled fault-related fractures in the limestone-rich Samtaesan Formation of the Chosun Supergroup and the phyllite-rich Suchangni Formation of unknown age. A K-Ar date of alteration sericite indicates that the Pb-Zn mineralization took place during Late Cretaceous (83.5 Ma), genetically in relation to the cooling of the nearby Muamsa Granite (83~87 Ma). Mineral paragenesis can be divided into three stages (I, II, III): (I) the deposition of barren massive white quartz, (II) the main Pb-Zn mineralization with deposition of white crystalline quartz and/or carbonates (rhodochrosite and dolomite), and (III) the deposition of post-ore barren calcite. Mineralogic and fluid inclusion data indicate that lead-zinc minerals in middle stage II (IIb) were deposited at temperatures between $182^{\circ}$ and $276^{\circ}C$ from fluids with salinities of 2.7 to 5.4 wt. % equiv. NaCl and with log $fs_2$ values of -15.5 to -11.8 atm. The relationship between homogenization temperature and salinity data indicates that lead-zinc deposition was a result of fluid boiling and later meteoric water mixing. Ore mineralization occurred at depths of about 600 to 700 m. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S_{CDT}=9.0{\sim}14.5$ ‰) indicate a relatively high ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids (up to 14 ‰), likely indicating an igneous source of sulfur largely mixed with an isotopically heavier sulfur source (possibly sulfates in surrounding sedimentary rocks). There is a remarkable decrease of calculated ${\delta}^{18}O$ value of water in hydrothermal fluids with increasing paragenetic time: stage I, 14.6~10.1 ‰; stage IIa, 5.8~2.2 ‰; stage IIb, 0.8~2.0 ‰; stage IIc, -6.1~-6.8 ‰, This indicates a progressive increase of meteoric water influx in the hydrothermal system at Kwangsin. Measured and calculated hydrogen and oxygen isotope values indicate that the Kwangsin hydrothermal fluids was formed from a circulating (due to intrusion of the Muamsa Granite) meteoric waters which evolved through interaction mainly with the Samtaesan Formation (${\delta}^{18}O=20.1$ to 24.9 ‰) under low water/rock ratios.

  • PDF

Temporal and Spatial Variability of the Middle and Lower Tropospheric Temperatures from MSU and ECMWF (MSU와 ECMWF에서 유도된 중간 및 하부 대류권 온도의 시 ${\cdot}$ 공간 변동)

  • Yoo, Jung-Moon;Lee, Eun-Joo
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.503-524
    • /
    • 2000
  • Intercomparisons between four kinds of data have been done to estimate the accuracy of satellite observations and model reanalysis for middle and lower tropospheric thermal state over regional oceans. The data include the Microwave Sounding Units (MSU) Channel 2 (Ch2) brightness temperatures of NOAA satellites and the vertically weighted corresponding temperature of ECMWF GCM (1980-93). The satellite data for midtropospheric temperatures are MSU2 (1980-98) in nadir direction and SC2 (1980-97) in multiple scans, and for lower tropospheric temperature SC2R (1980-97). MSU2 was derived in this study while SC2 and SC2R were described in Spencer and Christy (1992a, 1992b). Temporal correlations between the above data were high (r${\ge}$0.90) in the middle and high latitudes, but low(r${\sim}$0.65) over the low latitude and more convective regions. Their values with SC2R which included the noises due to hydrometeors and surface emission were conspicuously low. The reanalysis shows higher correlation with SC2 than with MSU2 partially because of the hydrometeors screening. SC2R in monthly climatological anomalies was more sensitive to surface thermal condition in northern hemisphere than MSU2 or SC2. The first EOF mode for the monthly mean data of MSU and ECMWF shows annual cycle over most regions except the tropics. The mode in MSU2 over the Pacific suggests the east-west dipole due to the Walker circulation, but this tendency is not clear in other data. In the first and second modes for the Ch2 anomalies over most regions, the MSU and ECMWF data commonly indicate interannual variability due to El Ni${\tilde{n}$o and La Ni${\tilde{n}$a. The substantial disagreement between observations and model reanalysis occurs over the equatorial upwelling region of the western Pacific, suggesting uncertainties in the model parameterization of atmosphere-ocean interaction.

  • PDF

Microscopic Analysis of Effect of Shot Peening on Corrosion Fatigue Behavior of Aluminum Alloy (알루미늄합금 재료의 부식피로거동에 미치는 쇼트피닝 효과에 대한 미시적 분석)

  • Kim, Jong-Cheon;Cheong, Seong-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1381-1389
    • /
    • 2012
  • The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppresses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue.

Study on the Spin Valve Giant Magnetoresistance With a New Mn-Ir-Pt Antife rromagnetic Material (Mn-Ir-Pt 새로운 반강자성체를 사용한 스핀밸브 거대자기저항에 관한 연구)

  • 서수정;윤성용;김장현;전동민;김윤식;이두현
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.141-145
    • /
    • 2001
  • The Mn$\_$80/Ir$\_$18.1/Pt$\_$1.9/ exchange bias layers (EBLs), which have a small amounts of Pt, exhibit a high value of H$\_$ex/. The Si/Ni-Fe/Mn$\_$80/Ir$\_$18.1/Pt$\_$1.9/ EBL shows the largest H$\_$ex/ of 187 Oe, which is equivalent to a exchange energy (J$\_$ex/) of 0.146 erg/cm$^2$. Mn$\_$80/Ir$\_$18.1/Pt$\_$1.9/ EBLS are estimated to have blocking temperature of about 250 $\^{C}$, which is higher than those of Mn-Ir EBLs and Mn-Ir-Pt EBLs with higher Pt contents. This result implies that a little addition of Pt element promotes thermal stability in the Mn-Ir-Pt EBLs. The chemical stability of Mn-Ir-Pt EBLs was characterized by potentiodynamic test, which was performed in 0.001 M NaCl solution. The current density of Mn-Ir-Pt films was gradually reduced with increasing Pt content. The present results indicate that the Mn-Ir-Pt with a small amount of Pt is suitable for an antiferromagnetic material for a reliable spin valve giant magnetoresistance device.

  • PDF

Probiotic Potential of Plant-Derived Lactic Acid Bacteria with Antihypertensive Activity (항고혈압 활성을 가진 식물유래 젖산균의 생균제 특성)

  • Lee, Ye-Ram;Son, Young-Jun;Park, Soo-Yun;Jang, Eun-Young;Yoo, Ji-Yeon;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.789-798
    • /
    • 2016
  • Lactic acid bacteria (LAB) are industrially important microorganisms for probiotics. The recent widespread application of LAB for preparation of functional food is attributable to the accumulating scientific evidence showing their beneficial effects on human health. In this study, we isolated and characterized plant-derived LAB that show angiotensin-converting enzyme (ACE) inhibitory and antioxidant activities. The selected strain K2 was isolated from Kimchi, and identified as Lactobacillus plantarum by 16S rRNA gene analysis. The strain grew under static and shaking culture systems. They were also able to grow in different culture conditions like $25^{\circ}C{\sim}37^{\circ}C$ temperature, 4~10 pH range and ~6% NaCl concentration. L. plantarum K2 was highly resistant to acid stress; survival rate of the strain at pH 2.5 and 3 were 80% and 91.6%, respectively. The strain K2 also showed high bile resistance to 0.3% bile bovine and 0.3% bile extract with more than 74% of survival rate. The cell grown on MRS agar plate containing bile extract formed opaque precipitate zones around the colonies, indicating they have bile salt hydrolase activity. The strain showed an inhibitory activity against pathogenic bacteria such as Escherichia coli, Staphylococcus aureus and Listeria monocytogenes; antibacterial activity was probably due to the lactic acid. The K2 strain showed relatively higher autoaggregation values, antihypertensive and antioxidant activities. These results suggest that L. plantarum K2 could be not only applied as a pharmabiotic for human health but also is also starter culture applicable to fermentative products.

Stabilizing and Optimizing Properties of Crude Protease Extracted from Korean Figs (국내산 무화과에서 추출한 protease 조효소액의 안정성과 최적화에 관한 연구)

  • Kim, Mi-Hyun;Rho, Jeong-Hae;Kim, Mee-Jeong
    • Korean journal of food and cookery science
    • /
    • v.27 no.3
    • /
    • pp.29-37
    • /
    • 2011
  • Protease activity of fig (Ficus carica L.), cultivated in Korea was estimated. In particular, the proteolytic effect on myofibrilar protein was studied. A crude protease extract of fig was prepared in two ways; fig was homogenized in buffer followed by centrifugation, and the supernatant was precipitated by saturated ammonium sulfate followed by dialysis. The former method resulted in 41.15 mM/g fig protease activity, whereas the latter method resulted in 17.65 mM/g fig protease activity. The crude fig protease extract showed high specificity for casein as a substrate followed by egg white, bovine serum albumin, myofibrilar protein, collagen, and elastin. The extract had stable proteolytic activity in a pH range of 6.5~9.0 (optimal at pH 7-8) but lost activity, at pH 2-3. Proteolytic activity for myofibrilar protein was sensitive to pH. The proteolytic activity of the fig extract was steady up to $60^{\circ}C$ but declined at higher temperature. It also began to lose stability in salt concentrations >0.7 M NaCl. Fig has been used as a meat tenderizer for cooking, and these results support the tenderizing effectiveness of fig, particularly for Korean style meat marinating.

Germination and Emergence of Eclipta prostrata(L.) L. (한련초의 발아(發芽) 및 출현(出現))

  • Lee, H.K.;Moody, K.
    • Korean Journal of Weed Science
    • /
    • v.8 no.3
    • /
    • pp.299-307
    • /
    • 1988
  • Several experiments were conducted to investigate the effects of external factors on germination and emergence of Eclipta prostrata (L.)L. The weight of viable achenes doubled as a result of 90 minutes soaking in water. The germination of E. prostrata was significantly improved by alternating temperatures. At a constant temperature of $35^{\circ}C$, only 78% of the achenes germination, whereas at alternating temperatures of 35/$20^{\circ}C$, 96.5% of the achenes germinated. E. prostrata was more sensitive than rice to moisture stress. No germination of E. prostrata achenes occurred in the absence of oxygen. No germination of E. prostrata achenes occurred in the dark or when they were exposed to green, blue, and far-red light. Germination of E. prostrata achenes was influenced by the duration of illumination after absorption of water. Ten hours of illumination was needed for maximum germination and 2 hours for 50% germination. No significant changes in germination of E. prostrata achenes were observed between pH 3 and 10. A high tolerance of E. prostrata achenes to salt was observed. Emergence of E. prostrata achenes was greatly affected by planting depth. In the upland soil, 74.0% of the achenes planted on the soil surface germinated, and no emergence was at planting depths of 0.5 cm or greater.

  • PDF