• Title/Summary/Keyword: High technology

Search Result 48,697, Processing Time 0.083 seconds

Development of Practical Problem-Based Home Economics Teaching.Learning Process Plans by Blended Learning Strategy - Focusing on a Unit 'the Youth and Consumer Life' - (Blended Learning(BL) 전략을 활용한 실천적 문제 중심 가정과 교수 학습 과정안 개발 - '청소년과 소비생활' 단원을 중심으로 -)

  • Lee, Jin-Hee;Chae, Jung-Hyun
    • Journal of Korean Home Economics Education Association
    • /
    • v.20 no.4
    • /
    • pp.19-42
    • /
    • 2008
  • The purpose of this study was to develop practical problem-based home economics teaching.learning process plans about a unit 'the youth and consumer life' of middle school eighth-grade Technology and Home Economics by applying blended learning(BL) strategy. According to ADDIE instructional design model, this study was conducted in the following procedure: analysis, design/development, implementation, and evaluation. In the stage of design and development, the selected unit was converted into a practical problem-based unit, and practical problem-based teaching. learning process plans were designed in detail by using BL strategy. An online study room for practical problem-based home economics instruction grounded in BL strategy was prepared by using Edunet(http://community.edunet4u.net/${\sim}$consumer2). Eight-session lesson plans were mapped out, and study aids for students and materials for teachers were prepared. In the implementation stage, the first-session teaching plans that dealt with a minor question 'what preparations should be made to become a wise consumer' were utilized when instruction was provided to 115 eighth graders who were in three different province, and the other one was in a middle school in the city of Daejeon. The experimental teaching was implemented for two weeks in the following procedure: preliminary program, pre-online learning, main instruction and post- online learning. The preliminary program was carried out in a session in the classroom, and pre-online learning was provided before the main instruction was given in a session in the classroom. After the main instruction was completed, post-online learning was offered. In the evaluation stage, a survey was conducted on all the learners and teachers to find out their opinions and suggestions.

  • PDF

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Culture Conditions of Aspergillus oryzae in Dried Food-Waste and the Effects of Feeding the AO Ferments on Nutrients Availability in Chickens (건조한 남은 음식물을 이용한 Aspergillus oryzae균주 배양조건과 그 배양물 급여가 닭의 영양소 이용률에 미치는 영향)

  • Hwangbo J.;Hong E. C.;Lee B. S.;Bae H. D.;Kim W.;Nho W. G.;Kim J. H.;Kim I. H.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.4
    • /
    • pp.291-300
    • /
    • 2005
  • Two experiments were carried out to assess the appropriate incubation conditions namely; duration, moisture content and the ideal microbial inoculant for fermented dried food waste(EW) offered to broilers. The nutrient utilization of birds fed the FW diets at varying dietary inclusion rates was also compared with a control diet. In Experiment 1, different moisture contents(MC) of 30, 40, 50 and $60\%$ respectively were predetermined to establish the ideal duration of incubation and the microbial inoculant. A 1mL Aspergillus oryzae(AO) $(1.33\times10^5\;CFU/mL)$ was used as the seed inoculant in FW. This results indicated that the ideal MC for incubation was $40\~50\%$ while the normal incubation time was > 72 hours. Consequently, AO seeds at 0.25, 0.50, 0.75 and 1.00mL were inoculated in FW to determine its effect on AO count. The comparative AO count of FW incubated for 12 and 96 hours, respectively showed no significant differences among varying inoculant dosage rates. The FW inoculated with lower AO seeds at 0.10, 0.05 and 0.01mL were likewise incubated for 72 and 96 hours, respectively and no changes in AO count was detected(p<0.05). The above findings indicated that the incubation requirements for FW should be $%40\~50\%$ for 72 hours with an AO seed incoulant dosage rate of 0.10mL. Consequently, in Experiment II, after determining the appropriate processing condition for the FW, 20 five-week old male Hubbard strain were used in a digestibility experiment. The birds were divided into 4 groups with 5 pens(1 bird per pen). The dietary treatments were; Treatment 1 : Control(Basal diet), Treatment 2 : $60\%$ Basal+4$40\%$ FW, Treatment 3 : $60\%$ $Basal+20\%\;FW+20\%$ AFW(Aspergillus oryzae inoculate dried food-waste diet) and Treatment 4: $60\%$ Basal+$40\%$ Am. Digestibility of treatment 2 was lowed on common nutrients and amino acids compared with control(p<0.05) and on crude fat and phosphorus compared with AFW treatments(T3, T4)(plt;0.05). Digestibility of treatment 3 and 4 increased on crude fiber and crude ash compared treatment 2 (p<0.05). Digestibility of control was high on agrinine, leucine, and phenylalnine of essential amino acids compared with treatment 3 and 4(p<0.05), and diestibility of treatment 3 and 4 was improved on arginine, lysine, and threonine of essential amino acids. Finally, despite comparable nutrient utilization among treatments, birds fed the dietary treatment containing AO tended to superior nutrient digestion to those fed the $60\%$ Basa1+$40\%$ FW.

A Study of Guidelines for Genetic Counseling in Preimplantation Genetic Diagnosis (PGD) (착상전 유전진단을 위한 유전상담 현황과 지침개발을 위한 기초 연구)

  • Kim, Min-Jee;Lee, Hyoung-Song;Kang, Inn-Soo;Jeong, Seon-Yong;Kim, Hyon-J.
    • Journal of Genetic Medicine
    • /
    • v.7 no.2
    • /
    • pp.125-132
    • /
    • 2010
  • Purpose: Preimplantation genetic diagnosis (PGD), also known as embryo screening, is a pre-pregnancy technique used to identify genetic defects in embryos created through in vitro fertilization. PGD is considered a means of prenatal diagnosis of genetic abnormalities. PGD is used when one or both genetic parents has a known genetic abnormality; testing is performed on an embryo to determine if it also carries the genetic abnormality. The main advantage of PGD is the avoidance of selective pregnancy termination as it imparts a high likelihood that the baby will be free of the disease under consideration. The application of PGD to genetic practices, reproductive medicine, and genetic counseling is becoming the key component of fertility practice because of the need to develop a custom PGD design for each couple. Materials and Methods: In this study, a survey on the contents of genetic counseling in PGD was carried out via direct contact or e-mail with the patients and specialists who had experienced PGD during the three months from February to April 2010. Results: A total of 91 persons including 60 patients, 49 of whom had a chromosomal disorder and 11 of whom had a single gene disorder, and 31 PGD specialists responded to the survey. Analysis of the survey results revealed that all respondents were well aware of the importance of genetic counseling in all steps of PGD including planning, operation, and follow-up. The patient group responded that the possibility of unexpected results (51.7%), genetic risk assessment and recurrence risk (46.7%), the reproduction options (46.7%), the procedure and limitation of PGD (43.3%) and the information of PGD technology (35.0%) should be included as a genetic counseling information. In detail, 51.7% of patients wanted to be counseled for the possibility of unexpected results and the recurrence risk, while 46.7% wanted to know their reproduction options (46.7%). Approximately 96.7% of specialists replied that a non-M.D. genetic counselor is necessary for effective and systematic genetic counseling in PGD because it is difficult for physicians to offer satisfying information to patients due to lack of counseling time and specific knowledge of the disorders. Conclusions: The information from the survey provides important insight into the overall present situation of genetic counseling for PGD in Korea. The survey results demonstrated that there is a general awareness that genetic counseling is essential for PGD, suggesting that appropriate genetic counseling may play a important role in the success of PGD. The establishment of genetic counseling guidelines for PGD may contribute to better planning and management strategies for PGD.

Understanding User Motivations and Behavioral Process in Creating Video UGC: Focus on Theory of Implementation Intentions (Video UGC 제작 동기와 행위 과정에 관한 이해: 구현의도이론 (Theory of Implementation Intentions)의 적용을 중심으로)

  • Kim, Hyung-Jin;Song, Se-Min;Lee, Ho-Geun
    • Asia pacific journal of information systems
    • /
    • v.19 no.4
    • /
    • pp.125-148
    • /
    • 2009
  • UGC(User Generated Contents) is emerging as the center of e-business in the web 2.0 era. The trend reflects changing roles of users in production and consumption of contents on websites and helps us to understand new strategies of websites such as web portals and social network websites. Nowadays, we consume contents created by other non-professional users for both utilitarian (e.g., knowledge) and hedonic values (e.g., fun). Also, contents produced by ourselves (e.g., photo, video) are posted on websites so that our friends, family, and even the public can consume those contents. This means that non-professionals, who used to be passive audience in the past, are now creating contents and share their UGCs with others in the Web. Accessible media, tools, and applications have also reduced difficulty and complexity in the process of creating contents. Realizing that users create plenty of materials which are very interesting to other people, media companies (i.e., web portals and social networking websites) are adjusting their strategies and business models accordingly. Increased demand of UGC may lead to website visits which are the source of benefits from advertising. Therefore, they put more efforts into making their websites open platforms where UGCs can be created and shared among users without technical and methodological difficulties. Many websites have increasingly adopted new technologies such as RSS and openAPI. Some have even changed the structure of web pages so that UGC can be seen several times to more visitors. This mainstream of UGCs on websites indicates that acquiring more UGCs and supporting participating users have become important things to media companies. Although those companies need to understand why general users have shown increasing interest in creating and posting contents and what is important to them in the process of productions, few research results exist in this area to address these issues. Also, behavioral process in creating video UGCs has not been explored enough for the public to fully understand it. With a solid theoretical background (i.e., theory of implementation intentions), parts of our proposed research model mirror the process of user behaviors in creating video contents, which consist of intention to upload, intention to edit, edit, and upload. In addition, in order to explain how those behavioral intentions are developed, we investigated influences of antecedents from three motivational perspectives (i.e., intrinsic, editing software-oriented, and website's network effect-oriented). First, from the intrinsic motivation perspective, we studied the roles of self-expression, enjoyment, and social attention in forming intention to edit with preferred editing software or in forming intention to upload video contents to preferred websites. Second, we explored the roles of editing software for non-professionals to edit video contents, in terms of how it makes production process easier and how it is useful in the process. Finally, from the website characteristic-oriented perspective, we investigated the role of a website's network externality as an antecedent of users' intention to upload to preferred websites. The rationale is that posting UGCs on websites are basically social-oriented behaviors; thus, users prefer a website with the high level of network externality for contents uploading. This study adopted a longitudinal research design; we emailed recipients twice with different questionnaires. Guided by invitation email including a link to web survey page, respondents answered most of questions except edit and upload at the first survey. They were asked to provide information about UGC editing software they mainly used and preferred website to upload edited contents, and then asked to answer related questions. For example, before answering questions regarding network externality, they individually had to declare the name of the website to which they would be willing to upload. At the end of the first survey, we asked if they agreed to participate in the corresponding survey in a month. During twenty days, 333 complete responses were gathered in the first survey. One month later, we emailed those recipients to ask for participation in the second survey. 185 of the 333 recipients (about 56 percentages) answered in the second survey. Personalized questionnaires were provided for them to remind the names of editing software and website that they reported in the first survey. They answered the degree of editing with the software and the degree of uploading video contents to the website for the past one month. To all recipients of the two surveys, exchange tickets for books (about 5,000~10,000 Korean Won) were provided according to the frequency of participations. PLS analysis shows that user behaviors in creating video contents are well explained by the theory of implementation intentions. In fact, intention to upload significantly influences intention to edit in the process of accomplishing the goal behavior, upload. These relationships show the behavioral process that has been unclear in users' creating video contents for uploading and also highlight important roles of editing in the process. Regarding the intrinsic motivations, the results illustrated that users are likely to edit their own video contents in order to express their own intrinsic traits such as thoughts and feelings. Also, their intention to upload contents in preferred website is formed because they want to attract much attention from others through contents reflecting themselves. This result well corresponds to the roles of the website characteristic, namely, network externality. Based on the PLS results, the network effect of a website has significant influence on users' intention to upload to the preferred website. This indicates that users with social attention motivations are likely to upload their video UGCs to a website whose network size is big enough to realize their motivations easily. Finally, regarding editing software characteristic-oriented motivations, making exclusively-provided editing software more user-friendly (i.e., easy of use, usefulness) plays an important role in leading to users' intention to edit. Our research contributes to both academic scholars and professionals. For researchers, our results show that the theory of implementation intentions is well applied to the video UGC context and very useful to explain the relationship between implementation intentions and goal behaviors. With the theory, this study theoretically and empirically confirmed that editing is a different and important behavior from uploading behavior, and we tested the behavioral process of ordinary users in creating video UGCs, focusing on significant motivational factors in each step. In addition, parts of our research model are also rooted in the solid theoretical background such as the technology acceptance model and the theory of network externality to explain the effects of UGC-related motivations. For practitioners, our results suggest that media companies need to restructure their websites so that users' needs for social interaction through UGC (e.g., self-expression, social attention) are well met. Also, we emphasize strategic importance of the network size of websites in leading non-professionals to upload video contents to the websites. Those websites need to find a way to utilize the network effects for acquiring more UGCs. Finally, we suggest that some ways to improve editing software be considered as a way to increase edit behavior which is a very important process leading to UGC uploading.

Effects of Fermented Diets Including Liquid By-products on Nutrient Digestibility and Nitrogen Balance in Growing Pigs (착즙부산물을 이용한 발효사료가 육성돈의 영양소 소화율 및 질소균형에 미치는 영향)

  • Lee, Je-Hyun;Jung, Hyun-Jung;Kim, Dong-Woon;Lee, Sung-Dae;Kim, Sang-Ho;Kim, In-Cheul;Kim, In-Ho;Ohh, Sang-Jip;Cho, Sung-Back
    • Journal of Animal Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.81-92
    • /
    • 2010
  • This study was conducted to evaluate the effects of fermented diets including liquid by-products on nutrient digestibility and nitrogen balance in growing pigs. Treatments were 1) CON (basal diet), 2) F (fermented diet with basal diet), 3) KF (fermented diet with basal diet including 30% kale pomace), 4) AF (fermented diet with basal diet including 30% angelica keiskei pomace), 5) CF (fermented diet with basal diet including 30% carrot pomace) and 6) OF (fermented diet with basal diet including 30% grape pomace). A total of 24 pigs (41.74kg average initial body weight, Landrace $\times$ Yorkshire $\times$ Duroc), were assigned to 6 treatments, 4 replicates and 1 pig per metabolic cage in a randomized complete block (RCB) design. Pigs were housed in $0.5\times1.3m$ metabolic cage in a 17d digestibility trial. During the entire experimental period, Digestibility of dry matter (p<0.05) of treatment CON, F and CF were higher than other treatments. In crude protein digestibility, treatment F was higher than treatment AF and GF (p<0.05). Treatment GF showed the lowest digestibility of crude fiber among all treatments (p<0.05). In ether extract digestibility, treatment AF and CF showed higher than other treatments (p<0.05) except KF treatment. CF treatment showed the best digestibility of ash among all treatments (p<0.05). Whereas, For Ca and P digestibility, CF and OF treatments were improved than other treatments (p<0.05). Energy digestibility (p<0.05) of CON, F and CF treatments were higher than KF, AF and GF treatments. In total essential amino acid digestibility, F treatment was improved than AF, CF and GF treatments (p<0.05). In total non-essential amino acid digestibility, F treatment was higher than CON, AF and GF treatments (p<0.05). In total amino acid digestibility, F treatment was higher than AF and CF treatments (p<0.05) and GF treatment showed the lowest digestibility (p<0.05). In fecal nitrogen excretion ratio, GF treatment was greatest among all treatments (p<0.05) and F treatment was decreased than other treatments (p<0.05). In urinary nitrogen excretion ratio, CON and GF treatments showed the lowest among all treatments (p<0.05). In nitrogen retention ratio, CON treatment showed the high and KF treatment showed the lost among all treatments (p<0.05). Therefore, this experiment suggested that fermented diet could improve nutrient and amino acid digestibilities of growing pigs.

Microbiological Studies on Feed Supplements (사료첨가제(飼料添加劑)의 미생물오염(微生物汚染)에 관(關)하여)

  • Park, Su Kyung;Tak, Ryun Bin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.132-140
    • /
    • 1986
  • Eighty one products from 36 kinds of vitamin and mineral feed supplement collected during August, 1984 to February, 1985 were examined for microbiological contamination. In addition, 83 strains of coliform isolated from the samples were tested for the resistance to 8 kinds of antimicrobial drugs and distribution of R plasmid. General bacteria were detected in all of samples tested. Bacterial population was varied from less than 10 per gram of the sample to 1,400,000 per gram and 34 (42%) of 81 samples were contaminated with 100 to 1,000 cells per gram. Coliform isolation, which was more frequent in samples with larger number of general bacteria, was possible in 14 (17.3%) out of 81 samples tested and 6 (33.3%) out of 18 companies were coliform positive in their products. Forty one (49.4%) out of 83 coliform isolates were fecal coliform. The frequency of resistant strains was the highest to sulfadimethoxine (Sa) with 92.8% and followed by streptomycin (Sm, 67.5%), tetracycline (Tc, 50.6%), kanamycin (Km, 26.5%), chloramphenicol (Cm, 18.1%) and ampicillin (Am, 15.7%). No strain was resistant to nalidixic acid (Na) and gentamicin (Gm). The resistance frequency of fecal coliform strains were higher compare to non-fecal coliform strains. There were minimum inhibitory concentration (MIC) of $3,200{\mu}g/m{\ell}$ or higher in 7 strains to Am, 3 to Sm and 3 to Km, and 70 strains had MIC of $1,600{\mu}g/m{\ell}$ of higher to Sa while Tc had MICs from $1.6{\mu}g/m{\ell}$ to $400{\mu}g/m{\ell}$. All strains had MICs of $6.3{\mu}g/m{\ell}$ of lower to Na and $3.1{\mu}g/m{\ell}$ of lower to Gm. Seventy nine (95.2%) of 83 strains were resistant to one or more drugs tested. The most frequent resistance patterns were SaSm (14.5%) and followed by SaSmTc(12%), SaSmTcKm(8.4%) SaTc (8.4%) and SaSmKm (7.2%) ; total 19 different patterns were noted. Thirty two (40.5%) of 79 resistant strains were transferred all of a part of their resistance to Escherichia coli ML 1410. The frequency of transferable resistance was high in Am (100%) and Cm (80%) while low in Tc (38.1%), Sa (18.2%), Sm (17.9%) and Km (4.5%).

  • PDF

Animal Infectious Diseases Prevention through Big Data and Deep Learning (빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단)

  • Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.137-154
    • /
    • 2018
  • Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.

SANET-CC : Zone IP Allocation Protocol for Offshore Networks (SANET-CC : 해상 네트워크를 위한 구역 IP 할당 프로토콜)

  • Bae, Kyoung Yul;Cho, Moon Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.87-109
    • /
    • 2020
  • Currently, thanks to the major stride made in developing wired and wireless communication technology, a variety of IT services are available on land. This trend is leading to an increasing demand for IT services to vessels on the water as well. And it is expected that the request for various IT services such as two-way digital data transmission, Web, APP, etc. is on the rise to the extent that they are available on land. However, while a high-speed information communication network is easily accessible on land because it is based upon a fixed infrastructure like an AP and a base station, it is not the case on the water. As a result, a radio communication network-based voice communication service is usually used at sea. To solve this problem, an additional frequency for digital data exchange was allocated, and a ship ad-hoc network (SANET) was proposed that can be utilized by using this frequency. Instead of satellite communication that costs a lot in installation and usage, SANET was developed to provide various IT services to ships based on IP in the sea. Connectivity between land base stations and ships is important in the SANET. To have this connection, a ship must be a member of the network with its IP address assigned. This paper proposes a SANET-CC protocol that allows ships to be assigned their own IP address. SANET-CC propagates several non-overlapping IP addresses through the entire network from land base stations to ships in the form of the tree. Ships allocate their own IP addresses through the exchange of simple requests and response messages with land base stations or M-ships that can allocate IP addresses. Therefore, SANET-CC can eliminate the IP collision prevention (Duplicate Address Detection) process and the process of network separation or integration caused by the movement of the ship. Various simulations were performed to verify the applicability of this protocol to SANET. The outcome of such simulations shows us the following. First, using SANET-CC, about 91% of the ships in the network were able to receive IP addresses under any circumstances. It is 6% higher than the existing studies. And it suggests that if variables are adjusted to each port's environment, it may show further improved results. Second, this work shows us that it takes all vessels an average of 10 seconds to receive IP addresses regardless of conditions. It represents a 50% decrease in time compared to the average of 20 seconds in the previous study. Also Besides, taking it into account that when existing studies were on 50 to 200 vessels, this study on 100 to 400 vessels, the efficiency can be much higher. Third, existing studies have not been able to derive optimal values according to variables. This is because it does not have a consistent pattern depending on the variable. This means that optimal variables values cannot be set for each port under diverse environments. This paper, however, shows us that the result values from the variables exhibit a consistent pattern. This is significant in that it can be applied to each port by adjusting the variable values. It was also confirmed that regardless of the number of ships, the IP allocation ratio was the most efficient at about 96 percent if the waiting time after the IP request was 75ms, and that the tree structure could maintain a stable network configuration when the number of IPs was over 30000. Fourth, this study can be used to design a network for supporting intelligent maritime control systems and services offshore, instead of satellite communication. And if LTE-M is set up, it is possible to use it for various intelligent services.

The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure (공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구)

  • Kim, Keun-Hwan;Kwon, Taehoon;Jun, Seung-pyo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.1-33
    • /
    • 2019
  • The small and medium sized enterprises (hereinafter SMEs) are already at a competitive disadvantaged when compared to large companies with more abundant resources. Manufacturing SMEs not only need a lot of information needed for new product development for sustainable growth and survival, but also seek networking to overcome the limitations of resources, but they are faced with limitations due to their size limitations. In a new era in which connectivity increases the complexity and uncertainty of the business environment, SMEs are increasingly urged to find information and solve networking problems. In order to solve these problems, the government funded research institutes plays an important role and duty to solve the information asymmetry problem of SMEs. The purpose of this study is to identify the differentiating characteristics of SMEs that utilize the public information support infrastructure provided by SMEs to enhance the innovation capacity of SMEs, and how they contribute to corporate performance. We argue that we need an infrastructure for providing information support to SMEs as part of this effort to strengthen of the role of government funded institutions; in this study, we specifically identify the target of such a policy and furthermore empirically demonstrate the effects of such policy-based efforts. Our goal is to help establish the strategies for building the information supporting infrastructure. To achieve this purpose, we first classified the characteristics of SMEs that have been found to utilize the information supporting infrastructure provided by government funded institutions. This allows us to verify whether selection bias appears in the analyzed group, which helps us clarify the interpretative limits of our study results. Next, we performed mediator and moderator effect analysis for multiple variables to analyze the process through which the use of information supporting infrastructure led to an improvement in external networking capabilities and resulted in enhancing product competitiveness. This analysis helps identify the key factors we should focus on when offering indirect support to SMEs through the information supporting infrastructure, which in turn helps us more efficiently manage research related to SME supporting policies implemented by government funded institutions. The results of this study showed the following. First, SMEs that used the information supporting infrastructure were found to have a significant difference in size in comparison to domestic R&D SMEs, but on the other hand, there was no significant difference in the cluster analysis that considered various variables. Based on these findings, we confirmed that SMEs that use the information supporting infrastructure are superior in size, and had a relatively higher distribution of companies that transact to a greater degree with large companies, when compared to the SMEs composing the general group of SMEs. Also, we found that companies that already receive support from the information infrastructure have a high concentration of companies that need collaboration with government funded institution. Secondly, among the SMEs that use the information supporting infrastructure, we found that increasing external networking capabilities contributed to enhancing product competitiveness, and while this was no the effect of direct assistance, we also found that indirect contributions were made by increasing the open marketing capabilities: in other words, this was the result of an indirect-only mediator effect. Also, the number of times the company received additional support in this process through mentoring related to information utilization was found to have a mediated moderator effect on improving external networking capabilities and in turn strengthening product competitiveness. The results of this study provide several insights that will help establish policies. KISTI's information support infrastructure may lead to the conclusion that marketing is already well underway, but it intentionally supports groups that enable to achieve good performance. As a result, the government should provide clear priorities whether to support the companies in the underdevelopment or to aid better performance. Through our research, we have identified how public information infrastructure contributes to product competitiveness. Here, we can draw some policy implications. First, the public information support infrastructure should have the capability to enhance the ability to interact with or to find the expert that provides required information. Second, if the utilization of public information support (online) infrastructure is effective, it is not necessary to continuously provide informational mentoring, which is a parallel offline support. Rather, offline support such as mentoring should be used as an appropriate device for abnormal symptom monitoring. Third, it is required that SMEs should improve their ability to utilize, because the effect of enhancing networking capacity through public information support infrastructure and enhancing product competitiveness through such infrastructure appears in most types of companies rather than in specific SMEs.