• Title/Summary/Keyword: High strength steel wire

Search Result 66, Processing Time 0.023 seconds

Development of Thermite Powder for Rail Joining with Recycled Iron Oxide and Aluminium Powder (재활용 산화철 및 알루미늄 분말을 활용한 철도레일 이음용 테르밋 분말 개발)

  • Choi, Sang-Kyu;Park, Sung-Sang;Baek, Eung-Ryul
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.40-45
    • /
    • 2012
  • Nowadays in Republic of Korea, whole amount of the thermite welding powder for rail joinning is dependent on import. However the demand of the thermite welding powder would be enlarge because some constructing high-speed train and city metro projects are currently in progress. In addition this is the main reason why we should develop the thermite welding powder, domestically. This study is focused on utilizing the recyclable materials like Al powders from cans and iron oxide scales from wire rods as the main components of the thermite welding powder. By minimizing Al content in weld zone by controlling the mixing ratio of the Al powder in the thermite welding powder, the excessive dissolution of the Si and Mn components came from the Al powders could be controled. The tensile strength of welding zone in welded rail was 740 MPa, with that the developed thermite welding powder.

A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure (선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구)

  • Oh, Chong-In;Yun, Jin-Oh;Lim, Dong-Young;Jeong, Sang-Hoon;Lee, Jeong-Soo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF

Lateral Load Test on the Bar-type Anti-buoyancy Anchors in the Weathered Rock (풍화암에 시공된 Bar Type 부력앵커의 수평재하시험)

  • Park, Chan-Duk;Lee, Kyu-Hwan;Ryu, Nam-Jae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.165-174
    • /
    • 2004
  • This study is about a horizontal load test of buoyance anchor installed in the section where underground water level happens in the depth of 5m under the ground when the ground is excavated, because the section as a excavation section of high speed railway ${\bigcirc}{\bigcirc}$ station is near a rivers and because the section always has a reservoir of full water level on the left. Therefore, in this study we will appraise the long-term stability of the structure permanently being taken buoyance by the underground water level, through the spot test of the buoyance anchor installed in the section where underground water level happens. For that, Bar Type anchor is used, which can get enough pulling-out force by a method to resist buoyance by using friction force against the ground by high strength steel rod or steel wire. Anti-buoyance anchor is installed on the bottom slab of underground structure being taken horizontal force by the braking and accelerating of high speed train. And, It is aimed to analyze and grasp the review result of stability for the horizontal force that happens at the parking and stopping of high speed train, by executing horizontal load test for the grasping of the movements characteristic of buoyance anchor.

A Case Study on Axial Forces of Cable-band Bolts in Domestic Suspension Bridge (국내 현수교량의 케이블 밴드볼트 축력관리 및 검토사례)

  • Park, Si-Hyun;Jung, Woo-Young;Kim, Hyun-Woo;You, Dong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Suspension bridge cables made of high strength steel wires require periodical maintenance in accordance with the axial force of cable-band bolts, since the bolts in suspension bridges can undergo tension decrease due to creep of cable wires, bolt relaxation, load fluctuation, and cable re-arrangement, etc. Consequently, this study is aimed at investigating and subsequently evaluating the critical factors with respect to the bolt tension-decrease phenomenon in SR suspension bridge in Korea, based on field monitoring, theoretical studies, and field record management works. From the observation, it is interesting to note that the decrease in the bolt tension force is typically accompanied by plastic deformation of the zinc plating layers in the cable wires. In addition, a framework corresponding to generic methodologies to characterize the deformation in terms of the bolt tension-decrease and long-term history management has been developed in this exploratory study.

Changes of Hysteresis Loop Characteristics of the Tendon Under Tensile Stress (Tendon의 인장응력에 따른 자기이력특성 변화의 측정)

  • Kang, Sunju;Son, Derac;Joh, Changbin;Lee, Jungwoo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.123-128
    • /
    • 2015
  • The iron is an element having a high yield strength, mechanical hardness, good electrical conductivity, and also it has been used in various fields because of ease machining. In bridges have been used tendon made of a steel wire for large loads and light weight. Tension measurement of tendon employed in PreStressed Concrete (PSC) bridge is very important for the bridge safety check. NDT (Non-Destructive Testing) is essential for the safety check, however, magnetic NDT is difficult to apply due to the non-linear magnetization curve and hysteresis loop in the magnetic properties. In this work, for basic study of magnetic NDT application, we have constructed a B-H loop measuring system for 7-strand tendon of which diameter is 15.5 mm, and which can apply tensile stress up to 2.0 GPa. We have measured hysteresis loops of two kinds of tendons under different tensile stress. Amplitude permeability and maximum magnetic induction near knee show the most sensitive and high linearity depends on tensile stress. Relative amplitude permeability was decreased from 500 to 200 and maximum magnetic flux density changed 0.6 T.

Growth, Bone Mineralization and Mineral Excretion in Broiler Starter Chicks Fed Varied Concentrations of Cholecalciferol

  • Rama Rao, S.V.;Raju, M.V.L.N.;Shyam Sunder, G.;Panda, A.K.;Pavani, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.237-244
    • /
    • 2007
  • An experiment was conducted to study the growth performance, bone mineralization and mineral excretion in broiler starter chicks fed high levels of cholecalciferol (CC) at sub-optimal levels of calcium (Ca) and non-phytate phosphorus (NPP). Five hundred and sixty day-old Vencobb female broiler chicks were housed in raised wire floor stainless steel battery brooder pens ($24"{\times}30"{\times}18"$) at the rate of five chicks per pen. A maize-soyabean meal basal diet was supplemented with dicalcium phosphate, oyster shell powder and synthetic CC to arrive at two levels each of Ca (0.50 and 0.60%), and NPP (0.25 and 0.30%) and four levels of CC (200, 1,200, 2,400 and 3,600 ICU/kg) in a $2{\times}3{\times}4$ factorial design. Each diet was fed ad libitum to chicks in 7 pens from 2 to 21days of age. Body weight gain, feed intake and bone weight increased (p<0.05) with increase in level of CC at both the Ca and NPP levels tested. The CC levels required to obtain significant improvement in body weight gain and feed intake reduced (2,400 ICU/kg vs. 1,200 ICU/kg) with increase in levels of P in diet (0.25% vs. 0.3%, respectively). The feed conversion ratio was significantly improved (p<0.05) with increase in level of CC from 200 to 1,200 ICU/kg diet at 0.5% Ca, while at 0.6% Ca, the level of CC in diet did not influence the feed efficiency. Tibia mineralization (density, breaking strength and ash content) and Ca and P contents in serum increased significantly (p<0.05) with increase in levels of CC in diet. The CC effect on these parameters was more pronounced at lower levels of Ca and NPP (0.5 and 0.25%, respectively). The data on body weight gain and feed intake indicated that NPP level in diet can be reduced from 0.30 to 0.25% by increasing CC from 200 to 2,400 ICU/kg. Similarly, the bone mineralization (tibia weight, density and ash content) increased non-linearly (p<0.01) with increase in CC levels in diet. Concentrations of P and Mn in excreta decreased (p<0.01), by increasing CC level from 200 to 2,400 ICU/kg diet. It can be concluded that dietary levels of Ca and NPP could be reduced to 0.50 and 0.25%, respectively by enhancing the levels of cholecalciferol from 200 to 2,400 ICU/kg with out affecting body weight gain, feed efficiency and bone mineralization. Additionally, phosphorus and manganese excretion decreased with increase in levels of CC in broiler diet.