• Title/Summary/Keyword: High strength rebar(SD500)

Search Result 5, Processing Time 0.018 seconds

Development of Steel Pipe Splice Sleeve for High Strength Reinforcing Bar(SD500) and Estimation of its Structural Performance under Monotonic Loading (SD500 고강도 철근용 강관 스플라이스 슬리브 철근이음 개발 및 구조성능 평가)

  • Lee, Sang-Ho;Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.169-180
    • /
    • 2007
  • Among several splicing system of reinforcing bar, the grout-filled splice sleeve system has been applied widely. However, as the splice sleeve for high strength rebar as SD500 is not yet made in korea, the development of splice sleeve for high strength reinforcing bar are required as soon as possible. It is the purpose of this study to develop the steel pipe sleeve for high strength rebar as SD500 and estimate its structural performance by monotonic loading test. The experimental variables adopted in this study are the development length of rebars, types of sleeve etc. The results of this study showed that the developed steel pipe splice sleeve system for high strength reinforcing bar as SD500 retained the structural performance required in domestic, ACI and AIJ criteria. And it is considered that the study result presented in this paper can be helpful in developing reasonable design method of steel pipe splice sleeve system for high strength reinforcing bar as SD500.

Structural Performance of Steel Pipe Splice for SD500 High-strength Reinforcing Bar under Cyclic Loading

  • Kim, Hyong-Kee
    • Architectural research
    • /
    • v.10 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • It is the purpose of this study to evaluate the structural performance of steel pipe splice for SD500 high-strength reinforcing bar, through a cyclic loading test. The experimental variables adopted in this study include the development length of rebar, the type of sleeve, and size of reinforcing bar, among others. The results of this study showed that the developed steel pipe splice system for SD500 high-strength reinforcing bar, retained the structural performance required in domestic, ACI and AIJ code. It is considered that the study result presented in this paper can be helpful in developing a reasonable design method for a steel pipe splice system for SD500 high-strength reinforcing bar.

Comparison of Pure Reinforcement Quantity to Development & Splice Reinforcement Quantity using High-strength Reinforcing Bars (고강도 철근 사용에 따른 순수 철근량에 대한 정착 및 이음 철근량 비교)

  • Cho, Seung-Ho;Na, Seung-Uk;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.72-80
    • /
    • 2018
  • Whilst it is common to construct high-rise buildings and long-span structures in the construction and building industry, there might be a number of problems such as excessive re-bars arrangement, deterioration of concrete quality, unnecessary quantity take-off and so forth. As these types of buildings and structures are getting more popular, it is widespread to apply high-strength materials such as high-strength concrete and re-bars to sustain durability and stability. This research aims to investigate the effectiveness of the high-strength reinforcing bars on the underground parking in a rigid-frame structure. In this study, the reinforcing bars with different yield strength were applied to corroborate the usefulness and practicability of the high-strength re-bars on the underground parking in a rigid-frame structure. The test results show that the quantity of reinforcement bars is lowered, as the yield strength of the re-bars are grown in general. However, the quantity of reinforcement bars on the development and splice has a tendency to increase slightly. Despite of the increase of the development and splice, the total quantity of reinforcing bars was reduced since the increasing ration of the pure quantity is higher than the development and splice. Base on the test results, it would be possible to achieve the reduction of reinforcing bars arrangement and lowering the amount of work to be done during a construction phase. Moreover, the reduced amount of bar arrangement will make it possible to improve workability and constructability of reinforced concrete structures. Ultimately, we will be able to attain improved quality and efficiency of construction using reinforced concrete.

Comparison of the quantity estimations from the design phase and the settlement quantities of construction field to improve the extra rates of bar splice (철근 이음조정률의 개선을 위한 설계견적 수량과 현장시공 정산 수량의 비교분석 연구)

  • Kim, Sang-Yeon;Choi, Bo-Mi
    • Land and Housing Review
    • /
    • v.8 no.4
    • /
    • pp.257-266
    • /
    • 2017
  • LH has been using ultra high strength reinforcing bars (SD500 and SD600), since 2011. Such a change requires an adjustment of the old extra rates of bar splice to reflect use of ultra high strength reinforcing bars, as these rates had been set based on SD400 bars. It is particularly difficult to calculate precisely rebar lap-splice locations for large areas, such as those in apartment buildings. This research aims to adjust the extra rates of bar splice to reflect a reasonable rate; the rebar lap-splice length is not an exact estimation, but instead, an extra rates of bar splice is set and the rebar lap-splice length is increased by 2% (D 10) - 7% (025) depending on the bar size. The subjects of this study are LH apartments undergoing frame construction. We studied the quantity estimations from the design drawings, and analyzed the settlement quantities of construction field. The results of the study revealed that, when each of the quantities are analyzed, consider adjusting the extra rates of bar splice of some rebar to 1% - 3.5%. This was caused by an overuse of reinforcing bars in onsite construction and the use of supporting bars that have not been reflected in the documents, among other reasons. Based on the results of our study, an improvement plan for the current extra rates of bar splice seems to be necessary, cutting or raising the rate depending on the analysis of the data. Through this study, we expect to contribute to the calculation of reasonable construction costs, improvements in the quality of rebar work, and improvements in the capacity of design techniques for apartment buildings.

Evaluation of Structural Performance of RC Beam with Different Depths to Lap Splice Detail of SD700 Headed Bar (SD700 확대머리 철근의 겹침이음 상세를 적용한 단차가 있는 RC 보의 구조성능 평가)

  • Lee, Ji-Hyeong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.262-269
    • /
    • 2021
  • This paper conducts an evaluation of the structural performance of the lap splice detail of SD700 headed bar experiment for developing an RC beam with different depths joint details. The experiment variable is lap splice length, yield strength, and end anchorage of main reinforcements. For all specimens, a headed bar was applied to the main reinforcement of the beam with low depth (B2), and the beam with high depth (B1) was applied to the main reinforcement with two splice methods: straight headed bar and 90° hooked-headed bar. The experimental results were that specimens of applying SD500 and SD600 had the results of flexural fracture at the lap splice location, which maximum load was similar. For specimens of appling SD500, the 90° hooked-headed bar of B1, suppressed horizontal cracks in the lap splice section compared to the straight headed bar. Specimens of applying an SD 700 headed bar had the results of brittle anchorage failure. In addition, maximum load was increased with the lap splice length increasing. For specimens of applying SD700 headed bar, test for test maximum load/theoretical load for test development length/design development length were estimated to be 1.30~1.48 for the ACI 318-19 equation, and 1.14~1.30 for the KDS-2021 equation. Thus, ACI 318-19 equation had conservatively greater safety factors as estimated development lengththened.