• Title/Summary/Keyword: High strength copper alloy

Search Result 51, Processing Time 0.035 seconds

Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

  • Kim, Yeong H.;Lee, Yong H.;Lee, Yong D.
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.324-327
    • /
    • 2008
  • Stainless steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance, a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years.

Mechanical Properties of a Cu55Zr30Ti10Pd5 Bulk Amorphous Alloy (Cu55Zr30Ti10Pd5 비정질 합금의 기계적 거동)

  • Choi Won Wook;Gato H.;Kim Hyoung Seop;Hong Sun Ig;Inoue A.
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.281-284
    • /
    • 2005
  • Room and high temperature deformation behaviors of Cu-Zr-Ti-Pd bulk metallic glasses produced by copper mold casting were investigated. The addition of Pd was shown to enhance the glass forming ability and thermal stability of Cu-Zr-Ti base bulk metallic glass. The compressive strength of $Cu_{55}Zr_{30}Ti_{10}Pd_5$ bulk metallic glass was 2230 MPa with 1.8 plastic strain. The stress overshoot and yield drop phenomenon were observed below $487^{\circ}C$ and a drastic decrease in the flow stress was observed at $487^{\circ}C$. The stress overshoot is thought to be associated with stress-induced structural relaxation.

A Study of material analysis and its experimentation of metamorphosis and its utilities in Copper Alloy plates for contemporary metal craft (현대금속공예용 동합금판의 재료분석과 형질변환 실험 및 응용에 관한 연구)

  • Lim, Ock-Soo
    • Archives of design research
    • /
    • v.17 no.4
    • /
    • pp.241-250
    • /
    • 2004
  • In this research, the copper alloy plates C2200, C5210, C7701, C8113 were selected to make datum and to identify further usage of metal craft experimentation. For its experimentation, the general welding and TIG welding methods were researched; for 2nd experimentation, the Reticulation and Electroforming skill's differences in color and temperature were researched. With these methods 3 different kinds of works are introduced for sample studies. For this research, Dr. Lee, Dong-Woo who works in Poongsan Metal Co, supported 4 kinds of copper alloy metals. Which are Commercial bronze (Cu-Zn), Deoxidiged Copper(Cu-Sn-P), Nickel Silver (Cu-Ni-Zn), and White Bronze (Cu-Ni); they were applied partly and wholly by the method of Laminatin, Reticulation, Fusing, and Electroforming skills. In case of C2200, the brass, the A. C. TIG welding method is better under 2mm slight plate; the D.C. TIG welding is better upper 2mm plate; and 250~300$^{\circ}C$ is recommended for remain heat treatment. In case of C5210, not having Hydrogen in high temperature return period, doesn't need Oxygen in high temperature and hardening in comparative high temperature neither, it is good for welding. It contains Sn 2-9% ad P 0.03-0.4% generally; and in accordance with the growth rate of Sn contain amount, the harden temperature boundary become broad. In case of cold moment after welding, they are recommended that higher speed TIG welding, smaller melting site and less than 200$^{\circ}C$ for pre-heating temperature. In case of C7701, the 10-20% Ni, 15-30% Zn are widely used.. If it is upper 30% Zn, it become (${\alpha}+{\beta}$) system and adhesive power rate become lower, and the productivity become lower in low temperature but the productivity become higher in high temperature. Nickel Silver's resistance of electricity is well; and the heatproof and incorrodibility is good, too. Lastly, in case of C8113, good at persistence in salty and grind; high in strength of high temperature. In case of white brass, contain 10-30% Nickel and hardened in high temperature and become single phrase. For these reason, the crystallization particles easily become large, if the resistance become higher small amount of Pb, P, S separation rate become higher.

  • PDF

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.

A Study on the Strength Safety of Valve Structure for LPG Cylinder (LPG 용기용 밸브 구조물의 강도안전성에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.27-31
    • /
    • 2014
  • This paper presents a study on the strength safety of the weak parts at Part 1, Part 2 and Part 3 in the valve structure for LPG cylinder by using the finite element method. The maximum Von Mises stress of 27.5MPa was occurred at the corner edge of a valve Part 1 for the valve thickness of 1.5mm and LPG pressure of 3.5MPa. And the maximum Von Mises stresses for the valve thickness of 1.5mm and LPG pressure of 3.5MPa were 41.5MPa at Part 2 and 46.5MPa at Part 3. The FEM computed results show that the maximum Von Mises stresses at Part 1, Part 2 and Part 3 are very low value of 9.2~15.5% compared with the yield strength of a copper alloy, C3604. This means that the valve thickness for LPG cylinder is so over designed for the conventional valve. Thus, this paper recommends that the thickness at Part 1 and Part 2 is reduced for a light weight of a copper valve. But, the thickness at Part 3 may be better for a thick valve as a conventional valve for high torque strength.

Thermal Property of Mo-5~20 wt%. Cu Alloys Synthesized by Planetary Ball Milling and Spark Plasma Sintering Method (유성볼밀링 및 스파크 플라즈마 소결법으로 제조한 Mo-5~20 wt%. Cu 합금의 열적 특성)

  • Lee, Han-Chan;Moon, Kyoung-Il;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.516-521
    • /
    • 2016
  • Mo-Cu alloys have been widely used for heat sink materials, vacuum technology, automobile, and many other applications due to their excellent physical and electric properties. Especially, Mo-Cu composites with 5 ~ 20 wt.% copper are widely used for the heavy duty service contacts due to their excellent properties like low coefficient of thermal expansion, wear resistance, high temperature strength, and prominent electrical and thermal conductivity. In most of the applications, highly-dense Mo-Cu materials with homogeneous microstructure are required for better performance. In this study, Mo-Cu alloys were prepared by PBM (planetary ball milling) and SPS (spark plasma sintering). The effect of Cu with contents of 5~20 wt.% on the microstructure and thermal properties of Mo-Cu alloys was investigated.

Development on New Laser Tabbing Process for Modulation of Thin Solar Cell (박형 태양 전지 모듈화를 위한 레이져 태빙 자동화 공정(장비) 개발)

  • No, Donghun;Choi, Chul-June;Cho, Hyun Young;Yu, Jae Min;Kim, JungKeun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • In solar cell module manufacturing, single solar cells has to be joined electrically to strings. Copper stripes coated with tin-silver-copper alloy are joined on screen printed silver of solar cells which is called busbar. The bus bar collects the electrons generated in solar cell and it is connected to the next cell in the conventional module manufacturing by a metal stringer using conventional hot air or infrared lamp soldering systems. For thin solar cells, both soldering methods have disadvantages, which heats up the whole cell to high temperatures. Because of the different thermal expansion coefficient, mechanical stresses are induced in the solar cell. Recently, the trend of solar cell is toward thinner thickness below 180um and thus the risk of breakage of solar cells is increasing. This has led to the demand for new joining processes with high productivity and reduced error rates. In our project, we have developed a new method to solder solar cells with a laser heating source. The soldering process using diode laser with wavelength of 980nm was examined. The diode laser used has a maximum power of 60W and a scanner system is used to solder dimension of 6" solar cell and the beam travel speed is optimized. For clamping copper stripe to solar cell, zirconia(ZrO)coated iron pin-spring system is used to clamp both joining parts during a scanner system is traveled. The hot plate temperature that solar cell is positioned during lasersoldering process is optimized. Also, conventional solder joints after $180^{\circ}C$ peel tests are compared to the laser soldering methods. Microstructures in welded zone shows that the diffusion zone between solar cell and metal stripes is better formed than inIR soldering method. It is analyzed that the laser solder joints show no damages to the silicon wafer and no cracks beneath the contact. Peel strength between 4N and 5N are measured, with much shorter joining time than IR solder joints and it is shown that the use of laser soldering reduced the degree of bending of solar cell much less than IR soldering.

  • PDF

Aluminum Powder Metallurgy Current Status, Recent Research and Future Directions

  • Schaffer, Graham
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.7-7
    • /
    • 2001
  • The increasing interest in light weight materials coupled to the need for cost -effective processing have combined to create a significant opportunity for aluminum P/M. particularly in the automotive industry in order to reduce fuel emissions and improve fuel economy at affordable prices. Additional potential markets for Al PIM parts include hand tools. Where moving parts against gravity represents a challenge; and office machinery, where reciprocating forces are important. Aluminum PIM adds light weight, high compressibility. low sintering temperatures. easy machinability and good corrosion resistance to all advantages of conventional iron bm;ed P/rv1. Current commercial alloys are pre-mixed of either the AI-Si-Mg or AL-Cu-Mg-Si type and contain 1.5% ethylene bis-stearamide as an internal lubricant. The powder is compacted in closed dies at pressure of 200-500Mpa and sintered in nitrogen at temperatures between $580~630^{\circ}C$ in continuous muffle furnace. For some applications no further processing is required. although most applications require one or more secondary operations such as sizing and finishing. These sccondary operations improve the dimension. properties or appearance of the finished part. Aluminum is often considered difficult to sinter because of the presence of a stable surface oxide film. Removal of the oxide in iron and copper based is usually achieved through the use of reducing atmospheres. such as hydrogen or dissociated ammonia. In aluminum. this occurs in the solid st,lte through the partial reduction of the aluminum by magncsium to form spinel. This exposcs the underlying metal and facilitates sintering. It has recently been shown that < 0.2% Mg is all that is required. It is noteworthy that most aluminum pre-mixes contain at least 0.5% Mg. The sintering of aluminum alloys can be further enhanced by selective microalloying. Just 100ppm pf tin chnnges the liquid phase sintering kinetics of the 2xxx alloys to produce a tensile strength of 375Mpa. an increilse of nearly 20% over the unmodified alloy. The ductility is unnffected. A similar but different effect occurs by the addition of 100 ppm of Pb to 7xxx alloys. The lend changes the wetting characteristics of the sintering liquid which serves to increase the tensile strength to 440 Mpa. a 40% increase over unmodified aIloys. Current research is predominantly aimed at the development of metal matrix composites. which have a high specific modulus. good wear resistance and a tailorable coefficient of thermal expnnsion. By controlling particle clustering and by engineering the ceramic/matrix interface in order to enhance sintering. very attractive properties can be achicved in the ns-sintered state. I\t an ils-sintered density ilpproaching 99%. these new experimental alloys hnve a modulus of 130 Gpa and an ultimate tensile strength of 212 Mpa in the T4 temper. In contest. unreinforcecl aluminum has a modulus of just 70 Gpa.

  • PDF

Fabrication and Fault Test Results of Bi-2212/Cu-Ni Tubes for Superconducting Fault Current Limiting Elements (Bi-2212/Cu-Ni 튜브로 제작한 초전도 한류소자의 단락사고시험 결과)

  • Oh, S.Y.;Yim, S.W.;Yu, S.D.;Kim, H.R.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • For the development of superconducting fault current limiters (SFCLs), fault current limiting elements were fabricated out of Bi-2212 bulk tubes and tested. The SFCL elements consisted of tube shaped Bi-2212 bulks and metal shunts for the stabilizers. Firstly, the Bi-2212 bulk tubes were processed based on a design of monofilar coils in order to acquire large resistance and high voltage rating. 300 mm-long Bi-2212 tubes were designed to have the current path of 410 cm in length with 24 turns and 41 mm in diameter. The processed monofilar coil, as designed, had 300 A $I_c$ at 77 K. The fabricated superconducting monofilar coils were affixed to Cu-Ni alloy as that of stabilizers. The Cu-Ni alloys were processed to have the same shape of the superconducting monofilar coils. The Cu-Ni coil had resistivity of 32 ${\mu}{\Omega}$-cm at 77 K and 37 ${\mu}{\Omega}$-cm at 300 K. The metal shunts were attached to the outside of the Bi-2212 monofilar coil by a soldering technique. After the terminals made of copper were attached to both ends of the superconductor-metal shunt composite, the gap between the turns and the surface of the elements was filled with an epoxy and a dense mesh made of FRP in order to enhance the mechanical strength. The completed SFCL elements went through fault tests, and we confirmed that the voltage rating of 143 $V_{rms}$ (E =0.35 $V_{rms}$/cm) could be accomplished.

  • PDF

Type Classification and Material Properties by the Composition of Components in Gold Earrings Excavated from the Yeongnam Region (영남지역 출토 금제 귀걸이의 성분 조성에 따른 유형 분류와 금속 재료 특성)

  • Jeon, Ikhwan;Kang, Jungmoo;Lee, Jaesung
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.1
    • /
    • pp.4-21
    • /
    • 2019
  • In this paper, 23 Silla gold earrings from the sixth and seventhand centuries, excavated from the Yeongnam region, were analyzed. Based on the silver content of the gold plate, they were classified into three types. The classifications included type I(20-50wt%), type II(10-20wt%) and type III (less than 10wt%). In the analysis process, the composition and morphological differences were identified on the surface of the gold plate. In the case of type I and II earrings, it was observed that the fine holes were concentrated in a relatively higher part of the gold content. The causes of the difference in the surface composition of the gold plate were divided into four categories: 1) surface treatment, 2) thermal diffusivity in the manufacturing process, 3) differences in composition of alluvial gold, and 4) the refining method of gold. It is possible that depletion gilding was attempted to increase the gold content while intentionally removing the other metals from the surface of the gold alloy in the portion where the gold deposit is relatively concentrated on the surface of the gold plating. The highest copper content was detected in the earring with the highest gold content of the analyzed earrings, and it was assumed that thermal diffusion had occurred between the gold plate and the metal rod during the manufacturing process rather than intentional addition. Copper was detected only in the thin ring earring type, and copper was not detected in the thick ring earring type or pendant type. It also proves that this earring has a high degree of tightness at higher temperatures, as there was an invisible edge finish on other earrings and horizontal wrinkles on the gold plate surface. In terms of the material of the gold plate, we examined whether the silver content of the gold plate was natural gold or added by alloy through analyzing the alluvial gold collected in the region. As a result of the analysis, it was found that on average about 13wt% of silver is included. This suggests that type II is natural gold, type III is refined gold, and type I seems to have been alloyed with natural gold. Here, we investigated the refining method introduced in the ancient literature, both at home and abroad, about the possibility of alloying silver after the refining process of type III earrings and then making pure gold. It was found that from ancient refining methods, silver which had been present in the natural gold was removed by reacting and combining with silver chloride or silver sulfide, and long-term efforts and techniques were required to obtain pure gold through this method. Therefore, it was concluded that the possibility of adding a small amount of silver in order to increase strength after making pure gold through a refining process is low.