• Title/Summary/Keyword: High strength Al alloy

Search Result 360, Processing Time 0.029 seconds

Micro-mechanical Modeling of the Consolidation Processes in Titanium Metal Matrix Composites (티타늄금속기 복합재료의 강화공정에 관한 미시역학적 모델링)

  • 김준완;김태원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.207-210
    • /
    • 2002
  • Metal matrix composites(MMCs) are increasingly attractive for high technology components such as aerospace applications and transportations due to their high strength, stiffness, and toughness. Many processes for fabricating MMCs have been developed, and relatively simple Foil-Fiber-Foil method is usually employed in solid state consolidation processes. During the consolidation processes at high temperature, densification occurs by the inelastic flow of the matrix materials, and the process is coupled with the conditions of pressure, temperature and volume fraction of fiber and matrix materials. This is particularly important in titanium matrix composites, and thus a generic model based on micro-mechanical approaches enabling the evolution of density over time to be predicted has been developed. The mode developed is then implemented into FEM so that practical process simulation has been carried out. Further the experimental investigation of the consolidation behavior of SiC/Ti-6Al-4V composites using vacuum hot pressing has been performed, and the results obtained are compared with the model predictions.

  • PDF

Effect of Fabrication Process on the Mechanical Properties of High Strength 7175Al Die Forgings (고강도 7175Al 형단조재의 기계적 성질에 미치는 제조공정의 영향)

  • Lee, I.G.;Kang, S.S.;Lee, O.Y.
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.812-818
    • /
    • 2003
  • The aim of this study is to investigate the fabrication processes on the microstructual changes and mechanical properties of large 7175 aluminum die forgings. The billets range from 370 to 720 mm in diameter were homogenized and hot forged after direct chill casting. The strength and elongation of the homogenized cast billets were revealed nearly same level independent of the billet diameter. However, these properties of ø370 mm cast billet were superior to those of $\Pie720$ mm billet under$ T_{6}$ / condition. The tensile strength of die forged specimens under $T_{6}$ condition increased up to 20% than that of solution treatment, however, the elongation was reduced to 50%. The fracture toughness of die forged specimens under $T_{6}$ condition was 35.6∼39.0 MPa$.$$m^{1}$2 irrespective of the billet size and free forging processes, but this property increased up to 10% by$V_{74}$ treatment. The fracture toughness of die forged specimen manufactured with ø370 mm cast billet showed nearly same level of ø720 mm billet which was processed using MF or Cog free forging followed by die forging.

The Strength Evaluation of Al5083-O GMA Welding Zone According to the Heat Input and Mixing Shield Gas Ratio (Al5083-O GMA 용접부의 입열량과 보호가스 혼합비율에 따른 강도 평가)

  • 이동길;양훈승;정재강
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.158-165
    • /
    • 2002
  • This study was to evaluate mechanical properties and toughness of the Al5083-O aluminum alloy welding zone according to the mixing shield gas ratio and heat input change. The GMA(Gas Metal Arc) welding of the base metal was carried out with four different mixing shield gas ratios(Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%) and three different heat inputs(low, medium, and high). To investigate the Charpy absorbed energy of the weld zone, the specimens were divided base metal, weld metal, fusion line, and HAZ notched specimen according to the worked notch position. The different gas ratio and heat input had little effect upon the tensile strength. But Ar33%+He67% mixture had the greatest mechanical properties considering that the more He gas ratio concentrations, the higher yield strength and elongation. The maximum load and displacement of the weld metal notche specimen was so much low more than that of the base metal, but fusion line and HAZ notched specimens showed almost same regardless of the mixing shield gas ratio and heat input. The Charpy absorbed energy was lowest in weld metal notched specimen, and increased in the fusion line, and HAZ notche specimen in order. Ar33%+He67% mixture had the greatest toughness considering that the more He gas ratio, the higher absorption energy.

Effects of Cryogenic Treatment Cycles on Residual Stress and Mechanical Properties for 7075 Aluminum Alloy (극저온 열처리가 7075 알루미늄 합금의 잔류응력과 기계적 특성에 미치는 영향)

  • Kim, Hoi-Bong;Jeong, Eun-Wook;Ko, Dae-Hoon;Kim, Byung-Min;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • In this study, the effects of cryogenic treatment cycles on the residual stress and mechanical properties of 7075 aluminum alloy (Al7075) samples, in the form of a tube-shaped product with a diameter of 500 nm, were investigated. Samples were first subjected to solution treatment at $470^{\circ}C$, followed by cryogenic treatment and aging treatment. The residual stress and mechanical properties of the samples were systematically characterized. Residual stress was measured with a cutting method using strain gauges attached on the surface of the samples; in addition, tensile strength and Vickers hardness tests were performed. The detailed microstructure of the samples was investigated by transmission electron microscopy. Results showed that samples with 85 % relief in residual stress and 8% increase in tensile strength were achieved after undergoing three cycles of cryogenic treatments; this is in contrast to the samples processed by conventional solution treatment and natural aging (T4). The major reasons for the smaller residual stress and relatively high tensile strength for the samples fabricated by cryogenic treatment are the formation of very small-sized precipitates and the relaxation of residual stress during the low temperature process in uphill quenching. In addition, samples subjected to three cycles of cryogenic treatment demonstrated much lower residual stress than, and similar tensile strength compared to, those samples subjected to one cycle of cryogenic treatment or artificial aging treatment.

Investigation on nanoadhesive bonding of plasma modified titanium for aerospace application

  • Ahmed, Sabbir;Chakrabarty, Debabrata;Mukherjee, Subroto;Joseph, Alphonsa;Jhala, Ghanshyam;Bhowmik, Shantanu
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Physico-chemical changes of the plasma modified titanium alloy [Ti-6Al-4V] surface were studied with respect to their crystallographic changes by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM).The plasma-treatment of surface was carried out to enhance adhesion of high performance nano reinforced epoxy adhesive, a phenomenon that was manifested in subsequent experimental results. The enhancement of adhesion as a consequence of improved spreading and wetting on metal surface was studied by contact angle (sessile drop method) and surface energy determination, which shows a distinct increase in polar component of surface energy. The synergism in bond strength was established by analyzing the lap-shear strength of titanium laminate. The extent of enhancement in thermal stability of the dispersed nanosilica particles reinforced epoxy adhesive was studied by Thermo Gravimetric Analysis (TGA), which shows an increase in onset of degradation and high amount of residuals at the high temperature range under study. The fractured surfaces of the joint were examined by Scanning electron microscope (SEM).

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L.;He, Y.Q.;Wang, Na;Chen, Z.H.;Chen, Z.G.;Yan, H.G.;Xu, Z.K.
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.351-364
    • /
    • 2009
  • The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.

Evaluation of Surface Macrostructure and Mechanical Properties of Porous Surface Ti-HA Biomaterial Fabricated by a Leaching Process (Leaching 공정으로 제조한 표면 다 기공 Ti-HA 생체재료의 표면 조직 및 기계적 성질의 평가)

  • Woo, Kee Do;Kang, Duck Soo;Moon, Min Seok;Kim, Sang Hyuk;Liu, Zhiguang;Omran, Abdel-Nasser
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.369-375
    • /
    • 2010
  • Ti-6Al-4V ELI alloy, which is commonly used as a biomaterial, is associated with a high elastic modulus and poor biocompatibility. This alloy presents a variety of problems on several areas. Therefore, the development of good non-toxic biocompatible biomaterials with a low elastic modulus is necessary. Particularly, hydroxyapatite (HA) is an attractive material for human tissue implantation. This material is widely used as artificial bone due to its good biocompatibility and similar composition to human bone. Many scientists have studied the fabrication of HA as a biomaterial. However, applications of bulk HA compact are hindered by the low strength of HA when it is sintered. Therefore, HA has been coated on Ti or Ti alloy to facilitate good bonding between tissue and the HA surface. However, there are many problems when doing this, such as the low bonding strength between HA and Ti due to the different thermal expansion coefficients and mechanical properties. In this study, a Ti-HA composite with a porous surface was successfully fabricated by pulse current activated sintering (PCAS) and a subsequent leaching process.

Material Characteristics of Ti-6Al-4V Alloy Manufactured by Electron Beam Melting for Orthopedic Implants (전자빔 용해 방법으로 제조된 정형외과 임플란트용 Ti-6Al-4V 합금의 재료 특성 분석)

  • Gang, Gwan-Su;Jeong, Yong-Hun;Jang, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;U, Su-Heon;Park, Tae-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.25-25
    • /
    • 2018
  • Electron beam melting (EBM) is one of powder based additive manufacturing technology used to produce parts for high geometrical complexity and directly with three-dimensional computer aided design (CAD) model. It is kind of the most promising methods with additive manufacturing for a wide range of medical applications, such as orthopedic, dental implant, and etc. This research has been investigated the microstructure and mechanical properties of as fabricated and hot iso-static pressing (HIP) processed specimens, which are made by an Arcam A1 EBM system. The Ti-6Al-4V titanium alloy powder was used as a material for the 3 dimensional printing specimens. Mechanical properties were conducted with EBM manufacturing and computer numerical control (CNC) machining specimens, respectively. Surface morphological analysis was conducted by scanning electron microscopy (SEM) for their surface, dissected plan, and fractured surface after tensile test. The mechanical properties were included tensile stress-strain and nano-indentation test as a analysis level between nano and macro. As following highlighted results, the stress-strain curves on elastic region were almost similar between as fabricated and HIP processed while the ductile (plastic deformed region) properties were higher with HIP than that of as fabricated processed.

  • PDF

A Study on the Injection Molding Process of Inline Skate Frame Using Moldflow (Moldflow를 이용한 인라인스케이트 프레임의 사출성형공정에 관한 연구)

  • Lee, Hyoung-Woo;Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.289-295
    • /
    • 2010
  • Injection molding process is one of the most important methods to produce plastic parts with high efficiency and low cost. Today, injection molded parts have been increased dramatically the demand for high strength and quality applications. In this study, In-line skates are made of Al alloy and plastic materials to replace the frame for the optimization process is all about. I interpreted through mold design, Injection molding process that minimizes the runner and the gate dimension will determine the size and shape. Runner and gate dimensions of change based on availability of the product, I'll discuss the injection molding. This report investigates that the optimum injection molding condition for minimum of shrinkage. The FEM Simulation CAE tool, Moldflow, is used for the analysis of injection molding process.

Plastic Behaviro of Two Phase Intermetallic Compounds Based on $Li_2$-type$(Ai, Cr)_3$/Ti ($Li_2$$(Ai, Cr)_3$/Ti기 2상 금속간화합물의 소성거동)

  • Park, Jeong-Yong;O, Myeong-Hun;Wi, Dang-Mun;Miura, S.;Mishima, Y.
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.906-914
    • /
    • 1994
  • Plastic behavior of two-phase intermetallic compounds based on $LI_{2}$-type $(Al, Cr)_3$ Ti was investigated using compression test at R.T. and 77K. $LI_{2}$ single phase alloys and two-phase alloys consisting of mainly $LI_{2}$ phase and a few or 20% second phases were selected from AI-Ti-Cr phase diagram. In general, compared with Llz single phase, two-phase alloys consisting of 20% second phase showed relatively high yield strength and poor ductility. Among the alloys, however, AI-21Ti-23Cr alloy consisting of 20% $Cr_{2}Al$ phase showed available ductility as well as high yield strength. Plastic behavior of $LI_{2}$ single phase alloys and two-phase alloys consisting of a few% $Cr_{2}Al$ was also investigated. Homogenization of arc melted ingots substantially reduced the amount of second phases but introduced extensive pore. When Cr content increased in $Ll_{2}$ single phase alloys after the homogenization, the volume fraction of pore in the alloys decreased, and no residual pore was observed in two-phase alloys consisting of a few% $Cr_{2}Al$ phase. Environmental effect on the ductility of the alloys was investigated using compression test at different strain rates($1.2 \times 10^{-4}/s$ and $1.2 \times 10^{-2}/s$). Environmental embrittlement was least significant in A1-25Ti-10Cr alloy consisting of LIZ single phase among the alloys tested in this study. However, based on the combined estimation of the pore formation, environmental embrittlement and ingot cast structure, AI-21Ti-23Cr alloy consisting of 20% $Cr_{2}Al$ as the second phase is expected to show the best tensile elongation behavior.

  • PDF