• 제목/요약/키워드: High strength Al alloy

검색결과 352건 처리시간 0.028초

티타늄 합금판재(Ti-6Al-4V)의 고온 소성면형특성(1) (Plastic deformation characteristic of titanium alloy sheet (Ti-6Al-4V) at elevated temperature)

  • 박진기;김정한;박노광;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.158-163
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. However, due to the low formability and large spring back at room temperature, titanium alloy sheets were usually formed by slow forming or hot forming with heating die and specimen. In the sheet metal forming area, FE simulation technique to optimize forming process is widely used. To achieve high accuracy FE simulation results, Identification of material properties and deformation characteristic such as yield function are very important. In this study, uniaxial tensile and biaxial tensile test of Ti-6Al-4V alloy sheet with thickness of 1.0mm were performed at elevated temperature of 873k. Biaxial tensile tests with cruciform specimen were performed until the specimen was breakdown to characterize the yield locus of Ti-6Al-4V alloy sheet. The experimental results for yield locus are compared with the theoretical predictions based on Von Mises, Hill, Logan-Hosford, and Balat's model. Among these Logan-Hosford's yield criterion well predicts the experimental results.

  • PDF

Al6082-T6의 MIG용접부에서 입열량에 따른 열영향부의 연화와 인장특성에 관한 연구 (A Study on Tensile Properties and HAZ Softening Depending on the Amount of Heat Input in MIG Welding of Al6082-T6)

  • 백상엽;박경도;김원일;조상명
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.59-64
    • /
    • 2011
  • Al6082-T6 is widely used because of its corrosion resistance and excellent strength. HAZ softening occurs in MIG welding process for this aluminium alloys because this aluminium alloy is heated to higher temperature than its aging temperature during welding. Therefore, low heat input and minimum standard deviation of heat input are required for narrow HAZ width and, for higher strength of welds. In this study, Al6082-T6 was used to examine for HAZ softening with various heat input in aluminium MIG welding. For weldments, micro hardness was measured and tensile test was carried out. Minimum hardness was increased at high speed welding such as 80cm/min and 120cm/min in welding speed comparing with 40cm/min. Also, in case of high speed welding such as 80cm/min and 120cm/min, tensile strength of weldments was increased about 10% comparing with low speed welding(40cm/min).

Ti-6Al-4V합금의 미세조직에 따른 초고속 변형특성 (Effect of Microstructures on the Deformation Behavior of Ti-6Al-4V Alloy at Ultra High Strain rate)

  • 이유환;이동근;이성학;최준홍;허선무;이종수
    • 한국군사과학기술학회지
    • /
    • 제5권3호
    • /
    • pp.89-97
    • /
    • 2002
  • In this study, the effect of $\alpha$-phase morphology on the dynamic deformation behavior at ultra high strain rate was investigated by EBW(Explosive Bridge Wire) test. All of tests and analyses were conducted on three typical microstructures of Ti-6Al-4V alloy, i.e. equiaxed, widmanstatten and bimodal microstructures. The spall strength and HEL(Hugoniot Elastic Limit) of the specimens that have the thickness of 2mm and 4mm were highest with the bimodal microstructure. These results were similar with previous study which was performed by dynamic torsion test(Kolsky torsion test).

후판 Al 6061합금의 전자빔용접 특성 평가 (The Characteristic Evaluation of Electron Beam Welding for Al 6061 alloy with thick-thickness plate)

  • 정인철;심덕남;김용재
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.68-70
    • /
    • 2006
  • For the aluminum material of the thick-thickness more than 100mm Penetration depth Electron beam welding is effectively applicable with a characteristic of high energy intensity. But Al 6061 alloy has high crack sensitivity due to minor alloys, which are silicon, magnesium, copper etc. With a sample block of 135mm thickness EBW test was performed in vertical position. As tensile strength has $210{\sim}220N/mm^2$ with weld area broken. Bend test shows low ductility with fracture of partly specimens. Chemical contents of alloys show no difference between weld and base metal. Defect in middle weld area figures out typical hot crack due to low melting materials. Micro structure of weld area has some difference compare to HAZ and base metal. As a result of EBW test for Al 6061 alloy, it shows that weld defect could be occurred even though establishing of optimum weld parameter condition.

  • PDF

기계적 합금화한 Al-8Ti-1B 합금의 응력부식에 관한 연구 (A Study on Stress Corrosion of Al-8ti-1B Alloys by Mechanical Alloying)

  • 김기주;강성군;백영남
    • 한국표면공학회지
    • /
    • 제27권4호
    • /
    • pp.215-222
    • /
    • 1994
  • The role dispersoids has been studied in a number of researches as a key point for the high strength application of dispersion strengthened aluminum alloy. The mechanical alloying(MA) process with high mechanical properties of dispersion strengthened MA Al-8Ti-1B alloys were invested in order to evaluate their stress corrosion cracking(SCC) application. SCC properties of the mechanically alloyed Al-8Ti-1B were studied using slow strain rate test(SSRT). In this study Al-8Ti-1B alloy were more susceptible to SCC in solutions of pH=2.01 and 13.2 than pH=6.81 solution. In this study Al-8Ti-1B alloys by MA had more SCC resistance than Al-8Ti alloys or Al 7075-T73 alloys. So Al-8Ti-1B alloys by MA had more resistance in SSRT SCC susceptinility test than any other above alloying metals.

  • PDF

Al/APRP 적층재의 수지혼합비가 인장 및 티-필(T-peel) 강도 특성에 미치는 영향 (The Effect of Resin Mixture Ratio on Characteristics of Tensile and T-peel Strength in Al/AFRP Laminates)

  • 송삼홍;김철웅
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2374-2382
    • /
    • 2002
  • Aluminum alloy/aramid fiber reinforced plastic(Al/AFRP) laminates consists of high strength metal(A15052) and laminated aramid fiber with structural adhesive bond. The mixture ratio effect of epoxy resin curing agent accelerator on the tensile strength and T-peel strength characteristic in Al AFRP laminates were investigated in this study. The epoxy. diglycidylether of bisphenol A(DCEBA), It'as cured by methylene dianiline(MDA) with or without an accelerator(K-54). Eight different kinds of resin mixture ratios were selected for the test , five kinds of Al/AFRP laminates were named as Al/AFRP(1) and three others of Al/AFRP laminates were named as Al/AFRP(2). The comparison of tensile strength and T-peel strength with variation of resin mixture ratio were studied. Respectively. Al/AFRP(1) and Al/AFRP(2) indicated approximately 6.0 times and 7.0 times more improved maximum tensile strength in comparison with those of monolithic A15052. Al/AFRP(2) indicated approximately 1.5 times more impoved maximum T-peel strengths in comparison with those of Al/AFRP(1). As results. Al/AFRP(2) turned out to have more effective characteristics on the tensile strength and T-peel strength than those of Al/AFRP(1).

고규소(高珪素)-AI합금(合金)의 고온강도(高溫强度)에 관(關)한 연구(硏究) (A Study on the Strength of High-Silicon Aluminium Alloys at Elevated Temperatures)

  • 남태운
    • 한국주조공학회지
    • /
    • 제3권4호
    • /
    • pp.256-261
    • /
    • 1983
  • In this study, the variations of tensile strength and yield strength of Al-20% Si alloy were studied. Copper, magnesium and nickel as alloying elements added from 1% to 3% respectively. The temperature range was from room temperature to $350^{\circ}C$. The refinement of primary silicon crystal was treated with phosphorous addition. The results obtained are as follows: 1. Tensile strnegth and yield strength showed more increased strength in refining treated alloy than that of in nonrefining alloy at elevated temperature. 2. Tensile strength and yield strength were increased with the contents of copper. Tensile strength showed the maximum at $150^{\circ}C$, but yield strength was decreased with increasing temperature. 3. The effect of magnesium addition on tensile strength and yield strength showed the maximum at 1% addition and $150^{\circ}C$. 4. Tensile strength and yield strength showed a slight increase with the content changes of nickel and they were decreased with increasing temperature.

  • PDF

고강도 Al합금 A5083 및 A7N01의 $CO_2$ 레이저 용접성 ($CO_2$ Laser Weldablity of High Strength Al Alloy A5038 and A7N01)

  • 김장량;하용수;강정윤;김인배
    • 한국레이저가공학회지
    • /
    • 제4권2호
    • /
    • pp.1-12
    • /
    • 2001
  • This study has been performed to evaluate basic characteristics of CW-CO$_2$ laser welding process of A5083 and A7N01 Al alloy. The effect of welding parameters, such as shielding gas, gas flow rate, laser power and welding speed on the bead shape and porosity from bead on plate welding tests have been investigated. Welds shielded by He gas had deeper penetration and better bead shape than those shielded by Ar. The penetration depth was augmented with the increase of laser Power and the decrease of welding speed. Welds of A7N01 alloy had deeper penetration than those of A5083 alloy In beads of A5083 alloy which has deeper penetration, the volume fraction of porosities was high due to the number of its was few, but size of its was larger. The case of deeper penetration beads of A7N01 alloy, the porosity reduced under relatively higher power The Volume fraction of porosities in weld of A5083 alloy was significantly higher than that in weld of A7N01 alloy.

  • PDF

비탄성 변형 이론을 바탕으로 한 Mg-Al 합금의 슬립기구 천이 현상 해석 (Effect of slip system transition on the deformation behavior of Mg-Al alloy: internal variable based approach)

  • 이현석;방원규;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.186-189
    • /
    • 2004
  • Although magnesium has high potential for structural material due to the lightweight and high specific strength, the structural application has been limited by the low ductility at room temperature. The reason of the poor ductility is few activated slip systems of magnesium (HCP structure) during deformation. As temperature increases, however, additional non-basal slip systems are incorporated to exhibit higher ductility comparable to aluminum. In the present study, a series of tensile tests of Mg-Al alloy has been carried out to study deformation behavior with temperature variation. Analysis of load relaxation test results based on internal variable approach gave information about relationship between the micromechanical character and corresponding deformation behavior of magnesium. Especially, the material parameter, p representing dislocation permeability through barriers was altered from 0.1 to 0.15 as the non-basal slip systems were activated at high temperature.

  • PDF

비탄성 변형 이론을 바탕으로 한 Mg-Al 합금의 슬립기구 천이 현상 해석 (Effect of Slip System Transition on the Deformation Behavior of Mg-Al Alloy: Internal Variable Based Approach)

  • 이현석;장영원;방원규
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.535-539
    • /
    • 2004
  • Although magnesium has high potential for structural material due to the lightweight and high specific strength, the structural application has been limited by the low ductility at room temperature. The reason of the poor ductility is few activated slip systems of magnesium (HCP structure) during deformation. As temperature increases, however, additional non-basal slip systems are incorporated to exhibit higher ductility comparable to aluminum. In the present study, a series of tensile tests of Mg-Al alloy has been carried out to study deformation behavior with temperature variation. Analysis of load relaxation test results based on internal variable approach gave information about relationship between the micromechanical character and corresponding deformation behavior of magnesium. Especially, the material parameter, p representing dislocation permeability through barriers was altered from 0.1 to 0.15 as the non-basal slip systems were activated at high temperature.