• Title/Summary/Keyword: High stiffness

Search Result 2,248, Processing Time 0.03 seconds

Static Stiffness Characteristics of Main Spindle Interface using Finite Element Method (유한요소법을 이용한 주축 인터페이스부의 정강성 특성)

  • Hwang, Young-Kug;Chung, Won-Jee;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems such as the run-out errors and reduced stiffness must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an analysis of static stiffness in the main spindle interface. Finite element analysis is performed by using a commercial code ANSYS according to variation of cutting force, clamping force and rotational speed. From the finite element results, it is shown that the rotational speed and clamping force mostly influence on the variation of the static stiffness in the main spindle interface.

Development of Adaptive RCC Mechanism Using Double-Actuator Units (여자유도 액츄에이터를 이용한 능동RCC 장치의 개발)

  • Lim, Hyok-Jin;Kim, Byeong-Sang;Kang, Byung-Duk;Song, Jae-Bok;Park, Shin-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.168-177
    • /
    • 2007
  • In a number of fields, robots are being used for two purposes: efficiency and safety. Most robots, however, have single-actuator mechanism for each joint, where the tasks are performed with high stiffness. High stiffness causes undesired problems to the environment and robots. This study proposes redundant actuator mechanism as an alternative idea to cope with these problems. In this paper, Double-Actuator Unit (DAU) is implemented at each joint for applications of multi-link manipulators. The DAU is composed of two motors: the positioning actuator and the stiffness modulator, which enables independent control of positioning and compliance. A three-link manipulator with DAUs enables adaptive control of RCC. By modulating the joint stiffness of the manipulator and controlling the position of RCC, we can significantly reduce contact force during assembly tasks and surgical procedures.

  • PDF

A Study on the Dynamic Characteristics of Catenary (가선계의 동특성 해석)

  • 최병두;김정수
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.525-532
    • /
    • 1998
  • In this study, dynamic characteristics of catenary that supplies electrical power to high-speed trains is investigated. A particular emphasis is placed on the effect of droppers on the dynamic response of the contact wire, a dropper is an element that connects the contact wire with the messenger wire so as to maintain near uniform compliance, Finite element model compressing 3 spans is constructed. For the linear model, droppers are modeled as linear springs with various stiffness values. Modal analysis is performed to obtain the natural frequencies and modes and the variation in the modal density distribution for changing stiffness values are noted. Impulse response is also obtained through computer simulation. In practice, dropper is a nonlinear element with low stiffness in compression and high stiffness in tension. Hence, dropper can be modeled as a nonlinear spring with hi-directional stiffness values. Impulse and harmonic responses are obtained for the nonlinear model through simulation. The responses aye also compared with the linear cases.

  • PDF

The Effect of the flexural stiffness of Floor Slabs on The Seismic Response of Multi-story Building Structures (바닥판의 휨강성이 고층건물의 지진거동에 미치는 영향)

  • 김현수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.170-177
    • /
    • 2000
  • Recently many high-rise apartment buildings are constructed using the box system which is composed only of concrete walls and slabs. Commercial softwares such as ETABS used for the analysis of high-rise apartment buildings are employing the rigid diaphragm assumption for simplicity in the analysis procedure. In general the flexural stiffness of floor slabs are ignored in the analysis, This assumption may be reasonable for the estimation of seismic response of framed structures. But in the case of the box system used in the apartment buildings floor slabs has major effects on the lateral stiffness of the structure. So if the flexural stiffness of slabs in the box system is ignored the lateral stiffness may be significantly underestimated, For these reasons it is recommended to use plate elements to represent the floor slabs. In the study A typical frame structure and a box system structure are chosen as the example structure. When a 20 story frame structure is subjected to the static lateral loads the displacements of the roof are 15.33cm and 17.52cm for the cases with and without the flexural stiffness of the floor slabs. And in case of box system the roof displacement was reduced from 16.18cm to 8.61cm The model without the flexural stiffness of floor slabs turned out to elongate the natural periods of vibration accordingly.

  • PDF

Stiffness Analysis of a Low-DOF Planar Parallel Manipulator (저자유도 평면 병렬형 기구의 강성 해석)

  • Kim, Han-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.79-88
    • /
    • 2009
  • This paper presents the analytical stiffness analysis method for a low-DOF planar parallel manipulator. An n-DOF (n<3) planar parallel manipulator to which 1- or 2-DOF serial mechanism is connected in series may be used as a positioning device in planar tasks requring high payload and high speed. Differently from a 3-DOF planar parallel manipulator, an n-DOF planar parallel counterpart may be subject to constraint forces as well as actuation forces. Using the theory of reciprocal screws, the planar stiffness is modeled such that the moving platform is supported by three springs related to the reciprocal screws of actuations (n) and constraints (3-n). Then, the spring constants can be precisely determined by modeling the compliances of joints and links in serial chains. Finally, the stiffness of two kinds of 2-DOF planar parallel manipulators with simple and complex springs is analyzed. In order to show the effectiveness of the suggested method, the results of analytical stiffness analysis are compared to those of numerical stiffness analysis by using ADAMS.

Evaluation of Concrete-Track Deformation for High-Speed Railways by Characteristic Stiffness (강성특성치를 이용한 고속전철 콘크리트궤도의 처짐가능성 평가)

  • Joh, Sung-Ho;Lee, Il-Wha;Hwang, Seon-Keun;Kang, Tae-Ho;Kim, Seok-Chul
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.641-646
    • /
    • 2009
  • Concrete tracks are superior to ballast tracks in the aspect of durability, maintenance and safety. However, deteriorated stiffness of railroad bed and settlement of soft ground induced by trapped or seepage water lead to problems in safety of train operation. In this research, characteristic stiffness of concrete tracks, which is determined from FRACTAL (Flexural-Rigidity Assessment of Concrete Tracks by Antisymmetric Lamb Waves) technique, was employed as an index of track displacement. The characteristic stiffness is defined using Poisson's ratio, moment of inertia and stiffness ratio of subgrade to slab. To verify validity and reliability of the proposed characteristic stiffness, experimental and theoretical researches were performed. Feasibility of the characteristic stiffness based on FRACTAL technique was proved at a real concrete track for Korean high-speed trains. Validity of the FRACTAL technique was also verified by comparing the results of impulse-response tests performed at the same measurement array and the results of SASW tests and DC resistivity survey performed at a shoulder nearby the track.

  • PDF

Seismic Response Analysis of a Base-Isolated Structure Supported on High Damping Rubber Bearings (고감쇠 면진베어링에 의해 지지된 면진구조물의 지진응답해석)

  • Yoo, Bong;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.99-106
    • /
    • 1995
  • The seismic responses of a base Isolated Pressurized Water Reactor(PWR) are investigated using a mathematical model which expresses the superstructure as a linear lumped mass-spring and the seismic Isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 El Centre earthquake with linear amplification. In the analysis 5% of structural damping is used for the superstructure. The effects of high damping rubber bearing on seismic response of the superstructure in base isolated system are evaluated for four stiffness model types. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure. In the higher strain region where stiffness behaves non-linearly, the acceleration responses modelled by one equivalent stiffness are smaller than those in nonlinear spring model, and the higher stiffness spring model of isolator exhibits larger peak acceleration response at superstructure in the frequency range above 2.0 Hz. when subjected to linearly amplified 1940 El Centre earthquake.

  • PDF

A Study on the Design of the Prestressed Precision Cold Forging Die (예압된 정밀 냉간단조 금형설계에 관한 연구)

  • Yeo, H. T.;Choi, Y.;Hur, K. D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.377-380
    • /
    • 2000
  • The dimensional accuracy of the cold forged part is depended on the elastic characteristics of the die. To obtain the high stiffness of the prestressed die, the first stress ring of the tungsten carbide material is considered. For the design, Lam 's equation is used. The design of the prestressed die has been compared with the conventional that. For the comparison, the FE-analysis using ANSYS has been performed. The results indicate that the prestressed die with the high stiffness can be obtained by the using the high stiffness material as the first stress ring.

  • PDF

A Study on the Static and Dynamic Stiffness Evaluation of a High Speed Mold/Die Machining Center Structure (고속 금형가공센터 구조물의 강성평가에 관한 연구)

  • 최영휴;강영진;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.102-106
    • /
    • 2003
  • An experimental modal analysis and dynamic stiffness evaluation of a moving body structure of a high speed machining center are presented in this paper. The natural frequencies and corresponding modes, and dynamic compliance of a moving body structure of high speed machining center are investigated by using F.E.M., hydraulic exciter test, and impulse hammer test. The lowest three natural frequencies were found to be 56.6 Hz, 112.7 Hz, and 142.7 Hz by FEA respectively, while those were 55 Hz, 112 Hz, 131 Hz by experimental analysis. Furthermore, both computed and measured absolute dynamic compliances of the moving body structure in iso-direction showed good agreement especially at the first two mode frequencies. With our experimental data, the dynamic characteristics of the machining center can be exploited to get a new development of structural dynamic design and modification.

  • PDF

The Effects of the FIFA 11+ and Self-Myofascial Release Complex Training on Injury, Flexibility and Muscle Stiffness of High School Football Players

  • Choi, Young-In;Choi, Houng-Sik;Kim, Tack-Hoon;Choi, Kyu-Hwan;Kim, Gyoung-Mo;Roh, Jung-Suk
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.1
    • /
    • pp.38-44
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the effects of complex training on injury, flexibility, and muscle stiffness in high school male football players. Methods: A total of 60 football players were included in the study and were divided into three groups viz. the complex training group (CTG), 11+ training group (11+TG), and traditional training group (TTG). Injuries were recorded based on the prospective investigation method after starting the study, and the flexibility and muscle stiffness of the subjects were evaluated. Results: The research results showed that the injury rate per match was significantly lower in the CTG and 11+TG than the TTG. In the CTG, the flexibility of the hamstrings significantly increased and the stiffness of the rectus femoris (RF), biceps femoris (BF), and tensor fascia latae (TFL) muscles significantly decreased (p<0.05). In the 11+TG, the stiffness of the RF significantly decreased (p<0.05). In the TTG, the flexibility of the hamstrings significantly increased (p<0.05). Hamstring flexibility showed a significantly higher increase in the CTG and TTG compared to the 11+TG (p<0.05). Also, the stiffness of the RF and TFL muscles showed a significantly higher decrease in the CTG compared to the 11+TG and TTG (p<0.05). The stiffness of the BF muscles too showed a more significant decrease in the CTG compared to the TTG (p<0.05). Conclusion: The complex training method of the Fédération International de Football Association (FIFA) 11+ and self-myofascial release (SMFR) as a warm-up program, prevent injuries, enhance flexibility, and lower muscle stiffness of football players in high school. Thus, it is necessary to ensure the widespread use of the complex training program by instructors and players under the supervision of the Korea Football Association (KFA), given its reliability in preventing injuries and improving the performance of football players.