• Title/Summary/Keyword: High step up converter

Search Result 189, Processing Time 0.032 seconds

Design of Robust Controller for DC to DC Converter (DC - DC 컨버터 구동을 위한 강인제어기 설계)

  • Kim, Tae-Woo;Kim, Min-Chan;Yoon, Seong-Sik;Kim, Hyeon-Woo;Kim, Tae-Kyu;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.995_996
    • /
    • 2009
  • This paper presents a sliding mode control method for step up DC-DC converter. For high performance control of converter, it requires the robustness between the input current and the output voltage. As a result, in spite of disturbance and parameter uncertainty, the proposed controller has the robustness to control the output voltage.

  • PDF

Design of Active-Clamped Current-Fed Half-Bridge Converter With Voltage Doubler Output (전압체배 출력을 갖는 능동클램프 하프브리지 전류원 컨버터의 설계)

  • Cho, Kyeong-Sig;Jeong, Jin-Woo;Chung, Se-Kyo;Song, Yu-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.142-143
    • /
    • 2010
  • An active-clamped current-fed half-bridge converter for the high step-up application is proposed in this paper. The proposed converter is composed of active clamping snubber circuits and a voltage doubler rectifier. The operational principle, theoretical analysis, and design considerations are presented. To confirm the operation, features, and validity of the proposed circuit, the experimental result for a 200W, 24V input and 400V output prototype are presented.

  • PDF

Analysis and Design of a Single-Phase Tapped-Coupled-Inductor Boost DC-DC Converter

  • Gitau, Michael Njoroge;Mwaniki, Fredrick Mukundi;Hofsajer, Ivan W.
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.636-646
    • /
    • 2013
  • A single-phase tapped-inductor boost converter has been proposed previously. However, detailed characterization and performance analysis were not conducted. This paper presents a detailed characterization, performance analysis, and design expressions of a single-phase tapped-coupled-inductor boost converter. Expressions are derived for average and RMS input current as well as for RMS input and output capacitor current ripple. A systematic approach for sizing the tapped-coupled inductor, active switch, and output diode is presented; such approach has not been reported in related literature. This study reveals that sizing of the inductor has to be based on current ripple requirement, turns ratio, and load. Conditions that produce discontinuous inductor current are also discussed. Analysis of a non-ideal converter operating in continuous conduction mode is also conducted. The expression for the voltage ratio considering the coupling coefficient is derived. The suitability of the converter for high-voltage step-up applications is evaluated. Factors that affect the voltage boost ratio are also identified. The effects of duty ratio and load variation on the performance of the converter are also investigated. The theoretically derived characteristics are validated through simulations. Experimental results obtained at a low power level are included to validate the analytical and simulation results. A good agreement is observed among the analytical, simulation, and experimental results.

Analysis of input current in a Boost AC-DC converter using the partial resonant method (부분공진 승압형 AC-DC 컨버터의 입력전류 해석)

  • Kwak, Dong-Kurl;Lee, Kyung-Chin;Park, Jum-Mun;Lee, Jin-Ho;Kim, Young-Mun;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.185-187
    • /
    • 1995
  • A boost converter proposed in this paper operates with high power factor due to input current of sinusoidal waveform. If there were no input LPF, the current is got to be discontinuos form in proportion to AC input voltage magnitude under the constant duty factor switching. Thereupon, the harmonics of input current waveform is reduced and the LPF is made with few elaboration and the control circuit is simple. The switching devices in proposed circuit are operated with soft switching by the partial resonant method. The patial resonant circuit makes use of a reactor using step-up and a capacitor of loss-less snubber. The result is that switching loss is very low and efficiency of system is high.

  • PDF

Boost $1\Psi$ converter of high efficiency by partial resonant switching using lossless snubber (무손실 스너버를 이용한 부분공진 스위칭에 의한 고효율 승압형 단상 컨버터)

  • 서기영;곽동걸;전중함;이현우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.315-322
    • /
    • 1998
  • Power conversion system must increase switching frequency in order to achieve small size, light weight and low noise. However, the switches of converter are subject to high switching power losses and switching stresses. As a result, the power system has a lower efficiency. In this paper, the authors propose an AC-DC boost converter of high efficiency by partial resonant switching mode. The switching devices in the proposed circuit are operated with soft switching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. Besides, by regenerating energy, that is charged in a loss less snubber condenser of a snubber adopted to a common circuit, toward an input source part, this circuit can get increased efficiency. as merit. The result is that the switching loss is very low, the efficiency and power factor of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

A Noel Soft-Switching AC-DC Converter using $L^2SC$

  • Kim C. S.;Lee H. W.;Suh K. Y.;Kim H. D.;Kim K. T.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.271-275
    • /
    • 2001
  • In this paper, proposes a novel AC-DC converter of high power factor and high efficiency by partial resonant method. The input current waveform in proposed circuit is got to be a discontinuous sinusoidal form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Thereupon, the input power factor is nearly unity and the control circuit is simple. Also the switching devices in a proposed circuit are operated with soft switching by the partial resonant method. The result is that the switching loss is very low and the efficiency of system is high. The partial resonant circuit makes use of a inductor using step up and $L^2SC$ (Loss-Less Snubber Condenser). The switching control technique of the converter is simplified for switches to drive in constant duty cycle. Some simulative results and experimental results are included to confirm the validity of the analytical results.

  • PDF

Boost AC-DC Converter of High Power Factor and High Efficiency (고역률 고효율 승압형 AC-DC 컨버터)

  • Kwak, Dong-Kurl;Kim, Choon-Sam;Park, Ha-Yong;Shim, Jae-Sun;Shim, Sang-Heung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.45-52
    • /
    • 2005
  • This paper is studied on boost AC-DC converter of high power factor and high efficiency for discontinuous current control. The converter operated in discontinuous current control eliminates the complicated circuit control requirement, and reduces a number of components. The input current waveform in proposed circuit is got to be a discontinuous sinusoidal form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity and the control circuit is simple. Also the switching devices in a proposed circuit are operated with soft switching by the partial resonant method. The result is that the switching loss is very low and the efficiency of system is high. The partial resonant circuit makes use of a inductor using step up and loss-less snubber capacitor. The circuit topology of the converter is simplified. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

Research on Power Converters for High-Efficient and Light-Weight Auxiliary Power Supplies (APS) in Railway System (철도차량 보조전원장치의 고효율-경량화를 위한 전력변환회로 연구)

  • Lee, Jae-Bum;Cho, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2017
  • A recent trend of technical development in auxiliary-power-supplies (APS) is to replace 60Hz low frequency transformers with isolated type dc/dc converters. This paper introduces the technical trend in APS structures and proposes a power converter circuit suitable for high-efficient and light-weight APS. By utilizing the resonant converter, which achieves ZCS, to reduce switching losses, various types of APS structures (1-stage and 2-stage) are reviewed, and they are verified by simulation. The full-bridge resonant LLC converter is designed with a 1-stage power converting structure; the resonant converter topology is designed with a 2-stage power converting structure that has a pre-regulator converter to compensate for the wide input voltage range. Both a step-down converter and a step-up converter are designed and compared for the pre-regulator in the 2-stage structure. Operational characteristics are compared with simulation results and loss analyses are presented to proposes appropriate system structure and topologies.

Non-dissipative Snubber for Tapped-inductor Boost Converter in Continuous Conduction Mode for High Step-up Application (고승압비 응용을 위한 전류연속 모드 탭인덕터 부스트 컨버터의 무손실 스너버)

  • Kang, Jeong-il;Han, Sang-Kyoo;Han, Jonghee
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.3-4
    • /
    • 2013
  • 본 논문에서는 전류연속 모드로 동작하는 탭인덕터 부스트 컨버터를 위한 무손실 스너버를 제안하고 그 동작을 분석하며, 실험을 통해 그 유효성을 검증한다.

  • PDF

Design of High Step-up Converter for Auto Rescue Device (Auto Rescue Device를 위한 고승압 컨버터 설계)

  • Han, Sanghun;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.183-184
    • /
    • 2017
  • 엘리베이터의 경우 정전 시 승객을 안전하게 구출하기 위한 장치가 필요하다. 이를 위하여 Auto Rescue Device(ARD) 혹은 Uninterruptible Power Supply(UPS)가 엘리베이터에 설치된다. ARD는 정전 시 배터리의 전압을 승압하여 인버터의 DC 링크 전압을 유지한다. 만약 배터리의 전압보다 DC 링크 전압이 2배 이상 클 경우 일반적인 부스트 컨버터는 효율 등의 문제로 사용이 어렵다. 이에 본 논문에서는 ARD의 특성을 고려한 LLC 공진형 컨버터의 설계 방안에 대하여 서술하였다. 또한 이를 모의실험을 통하여 검증하였다.

  • PDF