• Title/Summary/Keyword: High speed vessel

Search Result 167, Processing Time 0.028 seconds

A Study for Stability Criteria of Small Fishing Vessel (소형어선 복원성 판정 기준에 관한 연구)

  • 박제웅;김주남;허진호
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.45-55
    • /
    • 1999
  • The majority of fishing vessels(under 20 tonnages) in Korea have a high casualty accident of the flood and capsizing occurred by lack of stability. Actually, it is so difficult to make out the data of inclining and stability tests of small fishing vessels after building, because most of them were built on experiences of manufacturer. According to above reasons, the aim of this study is an attempt to propose a stability criteria of small fishing vessels as follows: Firstly, it is examined that the stability is driven from a transverse metacenter height of actual ships, which is able to obtain a basic drawing and stability data. Secondly, it is examined the heeling at high-speed turning, and the period of rolling according to B/D(breadth/depth). Finally, it is suggested the stability criteria by using a dynamic state which is applied in passenger boat and fishing vessels over 24 meters.

  • PDF

Characteristics on the Motion Response of a Catamaran Power Yacht (카타마란형 파워요트의 운동응답 특성에 관한 연구)

  • Gim, Ok-Sok;Oh, Woo-Jun;Shon, Chang-Bae;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.447-452
    • /
    • 2010
  • A very good seakeeping vessel is able to operate effectively even in high sea states and also the passengers and the cargos are ensured in good conditions. The motions of a high speed boats are highly influenced by speed and dynamic forces even in encounter frequencies so that the assessment of seakeeping ability of the design craft in an early stage needs to be calculated for all three motions and for all ralative wave headings. In this paper, it concludes that RAO and RMS values of the catamaran's 3 motion are calculated according as the variation of Beafort scales and ship's speed. The ship motion response of the catamaran based on the RAO and RMS by encounter angles and speed was calculated.

A Study on Propulsion Performance of Underwater Ram-Jet with Optimized Nozzle Configuration (최적 노즐형상을 갖는 수중램제트의 추진성능에 관한 연구)

  • Kang, H.K.;Kim, Y.T.;Lee, Y.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.42-52
    • /
    • 1997
  • The basic principle of underwater ram-jet as a unique marine propulsion concept showing vary high cruise speed range(e. g. 80-100 knots) is the thrust production by the transfer of the potential energy of compressed gas to the operating liquid through kinetic mixing process. This paper is aimed to investigate the propulsive efficiency of the nozzle flow in underwater ram-jet at the speed of 80 knots for the buried type vessel. The basic assumption of the theoretical analysis is that mixture of water and air can be treated as incompressible gas. For an optimized nozzle configuration obtained from the performance analysis, preliminary data for performance evaluation are obtained and effects of nozzle inner wall friction, ambient temperature, ambient pressure, water density, gas velocity, bubble radius, flow velocity, diffuser area ratio, mass flow ratio and water velocity gradient are investigated.

  • PDF

The Simulation for the Organization of Fishing Vessel Control System in Fishing Ground (어장에 있어서의 어선관제시스템 구축을 위한 모의실험)

  • 배문기;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.175-185
    • /
    • 2000
  • This paper described on a basic study to organize fishing vessel control system in order to control efficiently fishing vessel in Korean offshore. It was digitalized ARPA image on the fishing processing of a fleet of purse seiner in conducting fishing operation at Cheju offshore in Korea as a digital camera and then simulated by used VTMS. Futhermore, it was investigated on the application of FVTMS which can control efficiently fishing vessels in fishing ground. The results obtained were as follows ; (1) It was taken 16 minutes and 35 minutes to casting and hauling net in fishing processing respectively. The length of rope pulled by scout boat was 200m, tactical diameter in casting net was 340.8m, turning speed was 6kts as well. (2) The processing of casting and hauling net was moved to SW, NE as results of simulation when the current direction and speed set into NE, 2kts and SW, 2kts respectively. Such as these results suggest that can predict to control the fishing vessel previously with information of fishing ground, fishery and ship's maneuvering, etc. (3) The control range of VTMS radar used in simulation was about 16 miles. Although converting from a radar of the control vessel to another one, it was continuously acquired for the vector and the target data. The optimum control position could be determined by measuring and analyzing to distance and direction between the control vessel and the fleet of fishing vessel. (4) The FVTMS(fishing vessel traffic management services) model was suggested that fishing vessels received fishing conditions and safety navigation information can operate safely and efficiently.

  • PDF

Design on the interfacing between auto-pilot and water-jet drive system (Auto pilot 와 water jet drive system 간의 Interface 설계)

  • Jin, Hyong-Du;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.535-538
    • /
    • 2009
  • Auto Pilot is the system which move automatically the vessel through locating operation mode to automatic after entering operating course using a electronic chart or plotter. And water jet is the a propulsion system that make a power to push the vessel through spouting the accelerated water which is absolbed by the hole in the bottom of vessel. The water jet receive the effect of the depth of water lowly, it's acceletion efficiency is higher under high speed and have an advantage on vibrating and floating sound, so it's demand is increasing as new propulsion system. However, the signal systems of auto Pilot and water jet are defferant, we need the system to communicate between each system. We propose the interface system which communicate between Auto pilot and water jet efficiently in this journal.

  • PDF

A embodiment of the interface module for feed back control between auto-pilot with water-jet system (오토파일럿과 워터젯시스템의 피드백 제어계 인터페이스 모듈의 구현)

  • Oh, Jin-Seong;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1108-1111
    • /
    • 2009
  • Auto Pilot is the system which move automatically the vessel through locating operation mode to automatic after entering operating course using a electronic chart or plotter. And water jet is the a propulsion system that make a power to push the vessel through spouting the accelerated water which is absorbed by the hole in the bottom of vessel. The water jet receive the effect of the depth of water lowly, it's acceleration efficiency is higher under high speed and have an advantage on vibrating and floating sound, so it's demand is increasing as new propulsion system. However, the signal systems of auto pilot and water jet are different, we need the system to interface between each system. We designed the interface that efficiently digital feed back control embedded module between auto pilot and water jet system in this paper.

  • PDF

Measures for Preventing Pressure Fracture of Fire and Flue Tube Boiler (노통연관식 보일러의 압궤사고 방지대책)

  • Lee Keun-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.14-19
    • /
    • 2004
  • Boiler is a hazardous equipment to have potential explosion ail the time. And not only it has malfunction at explosion. it lead to people death but also secondary accident such as explosion and fire. Therefore, this equipment should not be broken for keeping its own function. And also, high level of safety should be kept in the process of the use not to be malfunctioned. A large scale of accident due to boiler explosion can be preventive in advance. Boiler fracture is occurred by instant expansion (approximately 1700 time) from quick evaporation of rater in boiler, due to pressure decrease in boiler Emitting energy from it is tremendous and it is so dangerous because of its high temperature. Secondary explosion such as fire is also a main hazard occurring at fuel supply place. If any devices with high pressure is broken, then not only boiler vessel but also components of it are spread with high speed, causing secondary accident. This study is to analyze integrally accident cause of fire and flue tube boiler to have occurred pressure fracture actually, to show countermeasures to prevent accident loss from the fire and flue tube boiler.

On the mitigation of surf-riding by adjusting center of buoyancy in design stage

  • Yu, Liwei;Ma, Ning;Gu, Xiechong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.292-304
    • /
    • 2017
  • High-speed vessels are prone to the surf-riding in adverse quartering seas. The possibility of mitigating the surf-riding of the ITTC A2 fishing vessel in the design stage is investigated using the 6-DOF weakly non-linear model developed for surf-riding simulations in quartering seas. The longitudinal position of the ship's center of buoyancy (LCB) is chosen as the design parameter. The adjusting of LCB is achieved by changing frame area curves, and hull surfaces are reconstructed accordingly using the Radial Basis Function (RBF). Surf-riding motions in regular following seas for cases with different LCBs and Froude numbers are simulated using the numerical model. Results show that the surf-riding cannot be prevented by the adjusting of LCB. However, it occurs with a higher threshold speed when ship's center of buoyancy (COB) is moved towards stem compared to moving towards stern, which is mainly due to the differences on wave resistance caused by the adjusting of LCB.

A Study on the Corrosion of Al-Alloy Propeller Used for a Coasting Vessel (연안 선박용 Al합금 프로펠러의 부식에 관한 연구)

  • LIM, Uh-Joh;PARK, Hee-Ok;YUN, Byoung-Du
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.15 no.2
    • /
    • pp.176-183
    • /
    • 2003
  • Recently, with the tendency of lightening, high-strength and high-speed in the marine industries such as marine structures, ships and propellers, it is rapidly enlarged the use of the aluminium alloy. Therefore, there occurs much interest in the study on corrosion characteristics of aluminium alloy. This paper was studied on the corrosion characteristics of Al-Mg alloy propeller used for a coasting vessel. Under the various pH of marine environment, the corrosion test of Al-Mg alloy was carried out. And thus polarization resistance, corrosion potential, and current density behavior of Al-Mg alloy and galvanic corrosion behavior of Al-brass and Al-Mg alloy coupled Al 5086 and SS 400 for hull were investigated. The main results are as following: 1. The corrosion potential of Al-brass propeller is more nobel than materials for hull, but that of Al-Mg alloy propeller is low or similar to materials for hull. Therefore, the galvanic corrosion of hull due to Al-Mg propeller don't occur. 2. The polarization resistance of Al-Mg alloy in sea water of pH 4 is highest, and corrosion current density of Al-Mg propeller is the most controlled. 3. As pH value decreases, potential showed Evans polarization diagram approaches cathodic potential. The corrosion current density of Al-Mg alloy is controlled to anodic reaction rate, therefore, the corrosion reaction of Al-Mg alloy is anodic control.

ADVANCED DVI+

  • Kwon, Tae-Soon;Lee, S.T.;Euh, D.J.;Chu, I.C.;Youn, Y.J.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.727-734
    • /
    • 2012
  • A new advanced safety feature of DVI+ (Direct Vessel Injection Plus) for the APR+ (Advanced Power Reactor Plus), to mitigate the ECC (Emergency Core Cooling) bypass fraction and to prevent switching an ECC outlet to a break flow inlet during a DVI line break, is presented for an advanced DVI system. In the current DVI system, the ECC water injected into the downcomer is easily shifted to the broken cold leg by a high steam cross flow which comes from the intact cold legs during the late reflood phase of a LBLOCA (Large Break Loss Of Coolant Accident)For the new DVI+ system, an ECBD (Emergency Core Barrel Duct) is installed on the outside of a core barrel cylinder. The ECBD has a gap (From the core barrel wall to the ECBD inner wall to the radial direction) of 3/25~7/25 of the downcomer annulus gap. The DVI nozzle and the ECBD are only connected by the ECC water jet, which is called a hydrodynamic water bridge, during the ECC injection period. Otherwise these two components are disconnected from each other without any pipes inside the downcomer. The ECBD is an ECC downward isolation flow sub-channel which protects the ECC water from the high speed steam crossflow in the downcomer annulus during a LOCA event. The injected ECC water flows downward into the lower downcomer through the ECBD without a strong entrainment to a steam cross flow. The outer downcomer annulus of the ECBD is the major steam flow zone coming from the intact cold leg during a LBLOCA. During a DVI line break, the separated DVI nozzle and ECBD have the effect of preventing the level of the cooling water from being lowered in the downcomer due to an inlet-outlet reverse phenomenon at the lowest position of the outlet of the ECBD.