• Title/Summary/Keyword: High speed tool steel

Search Result 141, Processing Time 0.029 seconds

High speed machining of cavity pattern in prehardened mold using the small size tool (소경 공구를 이용한 고경도 패턴 금형의 고속 가공)

  • Im, Pyo;Jang, Dong-Kyu;Lee, Hee-Kwan;Yang, Kyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.133-139
    • /
    • 2004
  • High speed machining (HSM) can reduce machining time with the high metal removal rate by high speed spindle and feedrate. This paper supports HSM technology using the small size tool with the optimal tool path generation and modification of tool change. The optimum tool path is generated to reduce cutting length of cavity pattern and change the cutting tool for preventing the tool breakage by wear. The tool path is modified with the experiment data of tool wear and breakage to support tool change on reasonable time. The result can contribute to HSM technology of high hardness materials using the small size end-mill.

Analysis of Wire/Bar Rolling Process of High Speed Steel for Prevention of Center Fusion (고속도강 선.봉재의 중심부 용융현상방지를 위한 압연공정 해석)

  • Lee, S.Y.;Jeong, H.T.;Ha, T.K.;Jung, J.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.318-321
    • /
    • 2007
  • The temperature distribution of high speed tool steel wire/bar during high speed hot rolling procedures has been studied in this study. The tool steels wire/bar show severe temperature gradient during rolling procedures and the temperature of center part much higher than that of the surface. This temperature gradient accumulated after every rolling procedure and the center of rolled wire/bar could be remelt in a certain stage to cause inside defects. In the present study, the temperature distribution was simulated using finite element method and the processing parameters such as rolling speed, cooling condition, has been discussed to prevent the temperature increases of center wire/bar.

  • PDF

Effect of Ball End Mill Geometry and Cutting Conditions on Machinability of Hardened Tool Steel

  • Jang, Dong-Y.;Won, S.-T.
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2002
  • Roughing of tool steel in its hardened state represents a real challenge in the die and meld industry and process improvement depends on research of tool material, coating technique, and lubrication. However, roughing of hardened steels generates extreme heat and without coolant flooding, tool material cannot withstand the high temperature without choosing the right tools with proper coating. This research conducted milling tests using coated ball end mills to study effects of cutting conditions and geometric parameters of ball end mills on the machinability of hardened tool steel. KP4 steel and STD 11 heat treated steels were used in the dry cutting as the workpiece and TiAIN coated ball end mills with side relief angle of 12$^{\circ}$ was utilized in the cutting tests. Cutting forces, tool wear, and surface roughness were measured in the cutting tests. Results from the experiments showed that 85 m/min of cutting speed and 0.32 mm/rev of feed rate were optimum conditions for better surface finish during rough cutting and 0.26mm/rev with the same cutting speed are optimum conditions in the finish cutting.

Evaluation of Mechanical Properties with Tool Rotational Speed in Dissimilar Cast Aluminum and High-Strength Steel of Lap Jointed Friction Stir Welding (이종 주조알루미늄-고장력강의 겹치기 마찰교반접합에서 툴회전속도에 따른 기계적 특성평가)

  • Park, Jeong-Hun;Park, Seong-Hwan;Park, Soo-Hyeong;Joo, Young-Hwan;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.90-96
    • /
    • 2019
  • Recently, friction stir welding of dissimilar materials are one of the biggest issues in terms of light-weight and eco-friendly technology of the automotive, aircraft and ship industry. In this study, friction stir welding of dissimilar materials is introduced with different tool rotational speed. Materials used in experimentation consist of A357 gravity cast aluminum alloy and FB590 high-strength steel plates. Dissimilar materials of plate type are fabricated with width of 150mm, length of 300mm and thickness of 3mm and welding is carried out by the lap joint method. The correlation between probe length and mechanical properties were investigated according to rotational speed and welding speed at tool tilt angle 0 degree. Consequently, feasibility of FSWed dissimilar materials were successfully presented in case of cast aluminum and high-strength steel at lap joint method.

Enhancenent of Wear Resistance of TiN Coated High Speed Steel Tools through Improving some Coating Processes (코팅공정 개선에 의한 TiN코팅 고속도강 공구의 내마모특성 향상)

  • Lee, Y.M.;Son, Y.H.;Kim, H.S.;Back, J.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.32-37
    • /
    • 1996
  • Using the are ion plating(AIP) process, TiN coating was deposited onto high speed steel substrates. The effects of coating thickness, titanisum interlayer and shield on wear resisting capability of the coated tools were investigated. In order to promote good adhesion between the substrate and the TiN coating a thin Ti interlayer was deposited. A shield was set up also between Ti target and high speed steel substrates to prevent molten droplets from reaching the substrate. Three series of varying thickness of TiN coated layer were prepared with or without the Ti interlayer, and with or without the shield. The tools with the Ti layer and the shield showed longer tool lifes than those of other series of tools and the commercially available TiN coated HSS tools, by up to 70%.

  • PDF

A Study on the Performance of CBN Tools in the Machining of Hardened Die-Materials by High-Speed face Milling (금형용 고경도재의 고속정면밀링 가공시 CBN 공구의 성능에 관한 연구)

  • 조성실;임근영;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.26-30
    • /
    • 1996
  • This paper presents the performance of CBN tools in the machining of hardened die-materials, SKD11 and SKD61 steel with HRC 50, by high-speed face milling. Generally, grinding or EDM is being used in machining of hardened materials but the cost is very high. If those can be replaced by cutting, it will be a greatly economical advantage. CBN tool has been recognized as an effective tool in turning, but it has not been in milling. So wear and surface roughness mode of CBN tool for hardened SKD11 and SKD61 steel were investigated by high-speed face milling in this study Also the relation between cutting force and wear mode of CBN tools was investigated.

  • PDF

Life and Mechanical Properties of Hot Former Die for Bearing Race using P/M High Speed Steel (분말고속도공구강을 활용한 베어링 레이스 열간 단조 금형의 수명 및 기계적 특성)

  • Hong, Seong-Hyeon;Bae, Jong-Soo
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.367-371
    • /
    • 2007
  • P/M high speed steel (1.26% C, 4.42% Cr, 6.54% W, 4.92% Mo, 3.21 % V, 8.77% Co, bal. Fe) was applied to hot former die. It showed that the die life became 2.7 times higher than that of cast/wrought SKH 55 tool steel which is commercially used. The increase of die life was corresponding to the improved hardness and transverse rupture strength of PM high speed steel due to the finer grain and carbide as well as the uniform carbide distribution. The P/M high speed steel with the promoted die life could be an alternative to the conventional SKH55.

Microstructural Characteristics of Rapidly Solidified Highly Alloyed High Speed Tool Steels (급속응고한 고합금 고속도 공구강의 미세조직 특성)

  • Lee, In-Woo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.242-251
    • /
    • 1995
  • Highly alloyed high speed tool steels(ASP steels) were rapidly solidified by melt spinning process, and the microstructures of melt spun tool steel ribbons were examined by optical microscopy and transmission electron microscopy with energy dispersive x-ray spectroscope. The microstructure of melt spun tool steel ribbon was found to be consisted of ${\delta}-ferrite$ cells surrounded by austenite and V-rich MC carbides. The size of ${\delta}-ferrite$ cells and intercellular MC carbides were about $0.4{\mu}m$ or less and 30nm or less, respectively. From the melt spun tool steel ribbons, only the MC type carbide phase was observed, instead of $M_2C$, $M_{23}C_6$ and $M_6C$ carbides which were generally observed in other rapidly solidified high speed steels. Such a change in type of carbide phase formed could be attributed to the increase in alloying content of vanadium and carbon. However, changes in microsturcture of melt spun tool steels with alloying content of cobalt, vanadium and carbon were not observed.

  • PDF

강의 마찰용접에 미치는 탄소당량의 영향

  • 나석주;양영수
    • Journal of Welding and Joining
    • /
    • v.4 no.3
    • /
    • pp.32-42
    • /
    • 1986
  • In this study, the influence of carbon equivalents on friction welds of dissimilar steels was investigated. Four types of carbon steels with 10mm diameter were welded to a high-speed tool steel SKH 9. Main experimental results could be summarized as follows (1) Under constant friction pressure, the friction time increased almost linearly with the increasing burn-off length, while the forge length decreased almost linearly. (2) The maximum hardness in carbon steels increased almost linearly with the increasing carbon equivalent, but was much lower than that in the high speed steel. (3) After quenching and tempering of dissimilar steel friction welds, the hardness in carbon steel weldments became similar as that in the base metal, while the hardness in SKH 9 weld was still higher that of the base metal. (4) Relative movement in the friction phae occurred not at the interface of the weldments, but in the high speed steed steel near the interface. (5) For considered material combinations and welding parameters, most of fractures in tension and twisting tests occurred in the base metal. And welds with so high strength could produced in a wide range of welding parameters.

  • PDF

Design and Manufacture of Polymer Concrete Machine Tool Bed (폴리머 콘크리트 공작기계 베드의 설계와 제작)

  • 서정도;이대길;김태형;박보선;최원선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.32-36
    • /
    • 2002
  • High-speed movement and high-precision machining are the two most important requirements of present machine tool structures to reduce machining time and to increase the precision of products in various industrial fields such as semiconductor, automobile, and mold fabrication. The high speed operation of machine tools tue usually restricted not only by the low stiffness but also by the low damping of machine tool structures, which induces vibration during high speed machining. If the damping of machine tool structures is low, self induced or regenerative vibrations are bound to occur at high speed operation because the natural frequencies of machine tool structures can not be increased indefinitely. Therefore, the high damping capacity of a machine tool structure is an important factor for high speed machine tool structures. Polymer concrete has high potential for machine tool bed due to its good damping characteristics. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was desisted and manufactured for a high-speed gantry-type milling machine through static and dynamic analyses using finite element method. Then the dynamic characteristics were tested experimentally.

  • PDF