• Title/Summary/Keyword: High speed spindle

Search Result 416, Processing Time 0.024 seconds

Thermal Characteristics and Frequency Analysis of a High Speed Spindle for Small Tapping Center (소형 태핑센터 주축의 열특성 및 주파수 분석)

  • Choi, Dae-Bong;Kim, Soo-Tae;Ro, Seung-Kook;Cho, Hyun-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2012
  • High speed machining is the core technology that influences the performance of machine tools, and the high speed motor spindle is widely used for the high speed machine tools. The important problem in high speed spindle is to minimize the thermal effect by motor and bearing and frequency effect. This paper presents the thermal characteristic analysis and frequency experiment for a high speed spindle considering the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil cooling jacket and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. To find out the characteristic of vibration, the high speed spindle is excited in operational range. This result can be applied to the design and manufacture of a high speed tapping spindle.

Optimization of Spindle Units Considering the Decrease of Bearing Stiffness at High Speed Revolution (고속 회전시 베어링 강성강하를 고려한 주축 유니트의 최적화)

  • Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.717-723
    • /
    • 2010
  • Radial stiffness of angular contact ball bearings are decreased remarkably at high speed revolution, because the inner and outer ball contact angle with races arc changed under the ball centrifugal forces at high speed. In the past, the optimizations of spindle units were done under the assumption of unchanged bearing stiffness for the whole speed range. But the bearing stiffness is changed and the dimension of optimum spindle is also changed with speed. In the design phase, only one model of many optimum spindle models with speed should be selected. As optimization criterion, the area of transfer function at spindle nose is proposed to estimate simply and accurately improvement of dynamic characteristics in spindle units. Finally, according to many analyses of diverse spindle models with decreased bearing stiffness, the spindle with shorter bearing span is better than longer bearing span from the viewpoint of dynamic characteristics.

Analysis of radial error motion in a small-sized and high-speed spindle (소형-고속 스핀들의 반경방향 오차분석 방법)

  • 이응삼;이재하;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.604-608
    • /
    • 2004
  • In this paper, an efficient method is proposed to analyze the radial error of a miniaturized-high speed spindle system. Initially, a device is constructed for measuring the radial error motion using capacitance sensors. The capacitance sensors are placed perpendicular to the axis of the shaft and at 90o to each other. The spindle is rotated at high speed and the profile of the spindle is recorded. An algorithm is developed for analyzing the spindle data and determining the radial error of spindle. The present algorithm uses homogeneous transform matrix (HTM) method and iterative process for determining the radial error. The analysis procedure is performed for different speeds of the spindle. The data obtained from the present system and the results of evaluation are also presented in this paper. It is observed that this method is effective in determining and analyzing the spindle errors for high speed miniaturized spindle.

  • PDF

Thermal characteristics according to the preload and cooling conditions for the high frequency motor spindle with grease lubrication (그리스 윤활 고주파 모터 주축의 예압과 냉각에 따른 열특성)

  • 최대봉;김수태;정성훈;김용기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.439-444
    • /
    • 2004
  • The important problem in high speed spindle is to reduce and minimize the thermal effect by motor and ball bearings. In this study. the effects of bearing preload and cooling for high speed spindle with high frequency motor are investigated. A high speed spindle is composed of angular contact ball bearings, high frequency motor, grease lubrication, oil jacket cooling, and so on. Heat generation of the bearing and the high frequency motor are estimated from the theoretical and experimental data. The thermal analyses of high speed spindle to minimize the thermal effect and maximize the cooling effect are carried out under the various cooling conditions and preload. Method of variable bearing preload and cooling can be useful to design the high speed motor spindle. The results show that the optimal preload and cooling are very effective to minimize the thermal displacement by motor and ball bearing.

  • PDF

A Study on Spindle Shape Design using Design of Experiments (실험계획법을 이용한 주축 형상 설계에 관한 연구)

  • Shin, Jae-Ho;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.120-127
    • /
    • 2009
  • Spindle units of machine tool are very important part in the manufacturing area. Recently high speed machining has become the main issue of metal cutting. To develop high speed machine tools, a lot of studies have been carried out for high speed spindle. Due to increase of the rotational speed of the spindle, there has been renewal of interest in vibration of spindle. This paper concerns the improvement of spindle design using design of experiments. To improve the design of critical speed and weight of spindle, the experiments using central composite method have been carried out. The targets are critical speed and weight of spindle. For optimization of critical speed and weight and optimization of only critical speed by operation of all area search through response optimizer, the result of analysis has improved design of each factor. Finite element analyses are performed by using the commercial codes ARMD, CATIA V5 and ANSYS workbench. From the results, it has been shown that the proposed method is effective for modification of spindle design to improve critical speed and weight.

Spindle Design Technology for High Speed Machine Tools

  • Lee, Chan-Hong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.109-115
    • /
    • 2000
  • The spindle unit is core parts in high precision machine tools. Diverse static, dynamic and thermal charateristics of spindle unit are needed for special purpose of machine tools. Compromise between those charateristics will be done in concept design phase. High static stiffness at spindle nose may be very important performance for heavy cutting work. High dynamic stiffness is also useful to high precision and high speed machine tools. Improvement of thermal charateristics in spindle lead to high reliability of positioning accuracy. For high speed spindle structure, the design parameter such as, bearing span, diameter, bearing type and arrangement, preload, cooling and lubrication method should be in harmony.

  • PDF

Development of Sensor for Magnetically Levitated High Speed Spindle System (자기 부상 고속 주축계의 센서 개발)

  • Shin, Woo-Cheol;Lee, Dong-Ju;Hong, Jun-Hee;Noh, Myoung-Gyu
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.987-992
    • /
    • 2000
  • In a high speed spindle system, it is very important to monitor the operation of the spindle to prevent catastrophic damage to the system. Widely used sensors for monitoring are eddy-current and capacitive types. These sensors provide high accuracy of monitoring, but their steep prices lead to expensive high speed spindle systems. The main goal of our research is to develop technology for producing high speed spindle system utilizing magnetic bearings. As active magnetic bearings require position sensors for feedback control, a noncontact position sensor is being developed as a part of this main goal. Once developed, it will contribute to affordable high speed spindle system. This paper describes the selection process of the sensor types and the design of the driving circuit. We also report the experimental results that characterize the static and dynamic performances of the inductive sensor.

  • PDF

A Study on Static Stiffness of Tool Interfaces Considering Cutting Resistance (절삭저항을 고려한 툴 인터페이스부의 정강성 분석)

  • Shin, J.H.;Lee, C.M.;Hwang, Y.K.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2008
  • Spindle units of machine tool are very important part in the manufacturing area. Recently high speed machining has become the main issue of metal cutting. To develop high speed machine tools, a lot of studies have been carried out for high speed spindle. Due to increase of the rotational speed of the spindle, there has been renewal of interest in tooling system of high speed spindle. This paper concerns the static stiffness in the main spindle interface according to variation of clamping force, rotational speed and tool holder shank. Finite element analysis is performed by using a commercial code ANSYS workbench. From the results, it has been shown that the geometry of tool holder shank is mostly influence on the variation of the static stiffness in the main spindle interface.

Digital Controller Design of a Magnetic Bearing System for High Speed Milling Spindle (고속 밀링 주축용 자기베어링 시스템의 디지털 제어기 설계)

  • 노승국;경진호;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.398-403
    • /
    • 2004
  • The demand of high speed machining is increasing because the high speed cutting providers high efficiency of process, short process time, improved metal removal capacity and better surface finish. Active magnetic bearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting. The automatic control concept of magnetic bearing system provides ability of intelligent control of spindle system to increase accuracy and flexibility by means of adaptive vibration control. This paper describes a design and development of a milling spindle system which includes built-in motor with power 5.5㎾ and maximum speed 70,000rpm, HSK-32C tool holer and active magnetic bearing system. Magnetic actuators are designed for satisfying static load condition. The Performances of manufactured spindle system was examined for its static and dynamic stiffness, load capacity, and rotational accuracy. This spindle was run up to 70,000 rpm stably, which is 3.5 million DmN.

  • PDF

Oil-Air Lubrication Characteristics of a High Speed Spindle System for Machine Tools(I) Effect of Oil Supply Rate, Rotational Spindle Speed and Spindle System Structure (공작기계용 고속주축계의 오일에어윤활특성에 관한 연구 (I) 공급유량, 주축회전수 및 주축계 구조의 영향)

  • 김석일;최대봉;박경호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.351-358
    • /
    • 1993
  • Recently a high speed spindle system for machine tools has attracted considerable attention to reduce the machining time, to improve the machining accuracy, to perform the machining of light metals and hard materials and to unite the cutting and grinding processes. In this study, a high speed spindle system is developed by applying the oil-air lubrication method, angular contact ball bearings, injection nozzles with dual orifices and so on. And a lubrication experiment for evaluating the performance of the spindle system is carried out. Especially, in order to establish the lubrication conditions related to the development of a high speed spindle system, the effects of oil supply rate, rotational spindle speed and so on are studied and discussed on the bearing temperature rise, bearing temperature distribution and frictional torque. And the effect of spindle system structure on the bearing temperature distribution is investigated.