• 제목/요약/키워드: High speed spindle

검색결과 416건 처리시간 0.029초

오일제트윤활방식의 25,000rpm급 모터내장형 고속주축계의 윤활특성에 관한 연구 (A Study on the Oil-Jet Lubrication Characteristics of a Motor-Integrated High-Speed Spindle System with $\phi$65mm$\times$25,000rpm)

  • 이용희;김석일;김태형;박보선
    • 한국정밀공학회지
    • /
    • 제15권5호
    • /
    • pp.59-64
    • /
    • 1998
  • In this study, a motor-integrated high-speed spindle system with $\psi$65mm $\times$ 25,000rpm is developed by introducing the oil-jet lubrication method, ceramic angular contact ball bearings, a built-in motor and so on. And oil-jet lubrication experiments fur evaluating the system performance are performed under various operation conditions. Especially, in order to establish the oillet lubrication conditions related to the development of a high-speed spindle system, the effects of oil supply rate and rotational spindle speed are investigated on the temperature rise, temperature distribution, motor current and so on.

  • PDF

고속주축의 고장 및 수명평가에 관한 연구 (A Study on the Failure and Life Assessment of High Speed Spindle)

  • 이태홍
    • 한국정밀공학회지
    • /
    • 제31권1호
    • /
    • pp.67-73
    • /
    • 2014
  • A reliability evaluation or prediction can be defined as MTBF which stands for mean time between failures (Exclusively for repairable failures). Spindle system has huge effect on performance of machine tools and working quality as well as is required of high reliability. Especially, it takes great importance in producing automobiles which includes a large number of working processes. However, it is unusually difficult to predict reliability because there are lack of data and research about reliability of spindle system. Standards and methods of examinations for reliability evaluation of machine tools are scarce at local and abroad as well. Therefore, this research is meant to improve the reliability of spindle system before mass produced with developing standards of reliability and methods of examinations through FMEA to assess reliability of spindle system in prototype stages of developing high speed spindle system of machining center.

유한요소법을 이용한 주축 인터페이스부의 정강성 특성 (Static Stiffness Characteristics of Main Spindle Interface using Finite Element Method)

  • 황영국;정원지;이춘만
    • 한국공작기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.40-46
    • /
    • 2007
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems such as the run-out errors and reduced stiffness must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an analysis of static stiffness in the main spindle interface. Finite element analysis is performed by using a commercial code ANSYS according to variation of cutting force, clamping force and rotational speed. From the finite element results, it is shown that the rotational speed and clamping force mostly influence on the variation of the static stiffness in the main spindle interface.

압전형 부하 센서링이 장착된 5축 절삭가공기의 고속 주축시스템 설계 (Design of High Speed Spindle for 5-Axis Machining Equipment Equipped with Piezo-Electric Load Sensoring)

  • 최현진;박철우;장은실;김충현;최성대
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.20-25
    • /
    • 2011
  • In this paper, we reviewed the spindle system's motor and bearing and its mode safety for optimal design of a high speed spindle system that exceeds DmN value of 1,500,000. We could verify that it has a separation margin during critical speed by performing critical speed analysis. Also, we have selected an optimal sensoring installation location and actually manufactured & installed the sensor by identifying the stress concentration position in the axial load through finite element analysis to install the built-in piezo electric type load sensor to the spindle housing that can measure and monitor the machining load during high speed rotation of the spindle. Reproducibility is also verified by calibrating the error through the sensor's sensitivity adjustment after comparing the output between the plate dynamoneters and the load sensor to confirm the reproducibility of the load sensor.

고속주축의 회전정밀도 성능평가에 관한 연구 (A Sudy on the Ealuation of Rtational Acuracy of Hgh Seed Sindle)

  • 김종관;이중기
    • 소음진동
    • /
    • 제5권4호
    • /
    • pp.483-492
    • /
    • 1995
  • For evaluation of rotational accuracy performance of high speed machine tool spindle system, the characteristics of main spindle and tool motion behavior are presented by means of three point accuracy testing method. The results of experiments and analyses are as follows: (1) The high speed spindle rotational accuracy can be evaluated by the combination of the spindle and tool motion behavior. (2) The spindle motion behavior increases up to more that 4 times the tool motion behavior. (3) For the influence of oil viscosity on spindle and tool taper application, 32 cSt of oil viscosity showed the most satisfactory result for rotational accuracy. (4) In order to improve the rotational accuracy of high speed machine tool spindle system, it is needed to reduce the combination error. This can be achieved by improving the working accuracy and supplying the proper lubrication with contact area at the spindle and tool.

  • PDF

원통형 주축 변위 센서를 이용한 고속 밀링 가공 상태 감시 (A Cylindrical Spindle Displacement Sensor and its Application on High Speed Milling Machine)

  • 김일해;장동영
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.108-114
    • /
    • 2007
  • A new cutting force estimating approach and machining state monitoring examples are presented which uses a cylindrical displacement sensor built into the spindle. To identify the tool-spindle system dynamics with frequency up to 2 kHz, a home-built electro-magnetic exciter is used. The result is used to build an algorithm to extract the dynamic cutting force signal from the spindle error motion; because the built-in spindle sensor signal contains both spindle-tool dynamics and tool-workpiece interactions. This sensor is very sensitive and can measure broadband signal without affecting the system dynamics. The main characteristic is that it is designed so that the measurement is irrelevant to the geometric errors by covering the entire circumferential area between the target and sensor. It is also very simple to be installed. Usually the spindle front cover part is copied and replaced with a new one with this sensor added. It gives valuable information about the operating condition of the spindle at any time. It can be used to monitor cutting force and chatter vibration, to predict roughness and to compensate the form error by overriding spindle speed or feed rate. This approach is particularly useful in monitoring a high speed machining process.

볼-유정압 복합베어링을 갖는 고정밀 주축의 회전특성에 관한 연구 (Rotational Characteristics of High Precision Spindle Unit with Ball-Hydrostatic Bearing)

  • 이찬홍;이후상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.663-667
    • /
    • 2000
  • The spindle unit is core parts in high precision machine tools. Diverse static and dynamic charateristics of spindle unit are needed for special purpose of machine tools. Specially, high damping ability may be very useful to high precision and high speed spindle unit. But commercial bearing system has very low damping value and high stiffness. In this paper, the combined bearing system with ball-hydrostatic bearing is suggested for high damping spindle unit. The suggested bearing system has 30% damping ability more than general ball bearing's. The average rotational accuracy of spindle with combined bearing in working speed is 24% better than with ball bearing. The unbalance rotating experiment in spindle show that rotating error with combined bearing is only half value of with ball bearing.

  • PDF

고속 주축 상태 모니터링용 유도형 변위 센서의 특성 평가 (Characteristics Evaluation of Inductive Position Sensor for the State monitoring of a High Speed Spindle)

  • 신우철;홍준희;이동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.65-68
    • /
    • 2002
  • In a high speed spindle system, it is very important to monitor the state of rotating rotor. Particularly in active control spindle system, the position sensor must provide feedback to the control system on the exact position of the rotor. In order to monitor the state of a high speed spindle exactly, High accuracy and wide frequency bandwidth of sensors are important. This paper describes the factors which has an effect on performances of inductive position sensor. We also report the experimental results that characterize the performances of the inductive position sensor.

  • PDF

고속 스핀들의 변위측정 시스템 개발 (Development of a Measurement System for High-Speed Spindle Displacement)

  • 김효곤;정원지;주지훈;조영덕
    • 한국공작기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.8-13
    • /
    • 2008
  • At present many research projects on high-speed spindles are being conducted. These projects require a measurement technique which includes heat expansion, vibration and displacement measurement according to angular velocity. This paper presents the development of a measurement system for high-speed spindle displacement. The measurement system is based on $LabView^{(R)}$ and features the following sensors: optical sensor which reacts to the position of a marker on the spindle and enables two Laser Displacement Sensors(LDS). These Laser Displacement Sensors send their data to a DAQ(Data Acquisition Device). It is important that the delay time caused by the response times of the sensors as well as the sampling rate of the DAQ is considered because the spindle revolves at very high speeds.

공기냉각 모터내장형 주축계의 열거동에 관한 연구 (Study on Thermal Behavior of Motor Integrated Spindle With Air Cooling System)

  • Lee, D.W.;Park, D.B.;Park, H.K.
    • 한국정밀공학회지
    • /
    • 제12권8호
    • /
    • pp.86-91
    • /
    • 1995
  • Recently, motor integrated spindle is often used in a high speed spindle system of machine tools in order to increase machining speed. The important problem in high speed motor integrated spindle is to reduce thermal effect occured by motor and ball bearings. In this study, the effect of heat transfer from motor is investigated. The experimental equipment is composed with oil-air lubrication method, air cooling system and angular contact ball bearings. The results show that the thermal effect in motor is larger than in ball bearing until DmN 8000,000 with air cooling.

  • PDF