• 제목/요약/키워드: High speed rotor

검색결과 805건 처리시간 0.03초

회전자 편심을 가지는 IPM, SPM 전동기 진동 특성 비교: (1) 영구 자석에 의한 전자기력 (Comparison of Vibration Characteristics in IPM and SPM BLDC Motors with Rotor Eccentricity : (1) Electro-magnetic Force Due to PM)

  • 황근배;김경태;황상문
    • 한국소음진동공학회논문집
    • /
    • 제11권9호
    • /
    • pp.454-461
    • /
    • 2001
  • Acoustic noise and vibration of a BLDC motor is a coupled phenomenon between mechanical characteristics and electromagnetic origins through the motor air-gap. When a relative misalignment of rotor in the air-gap center exists on the assemblage, it is considered to influence the motor system characteristics. In this paper, the back electro motive force(BEMF) is analyzed by Finite Element Method(FEM) and verified by experiments for the SPM and IPM type motors. For magnetic field analysis, a FEM is used to account for the magnetic saturation. Using these results, the FEM is made to determine the appropriate electromagnetic field analysis in BLDC motors with rotor eccentricity ratio. A radial magnetic imbalance force of BLDC motor with rotor eccentricity is analyzed. Results demonstrate that the imbalance force is increased according to the degree of misalignment. An IPM motor, mostly chosen to realize high-speed operation, shows a worse effect on magnetic unbalanced forces and dynamic responses compared with SPM motor due to magnetic saturation when the rotor eccentricity exists.

  • PDF

무급유 포일 베어링으로 지지되는 소형 전동 압축기의 회전체동역학 성능 측정 및 예측 (Measurements and Predictions of Rotodynamic Performance of a Motor-Driven Small Turbocompressor Supported on Oil-Free Foil Bearings)

  • 백두산;황성호;김태호;이종성;김태영
    • Tribology and Lubricants
    • /
    • 제38권2호
    • /
    • pp.53-62
    • /
    • 2022
  • This study presents experimental measurements of the rotordynamic performance of a motor-driven small turbocompressor supported by gas beam foil journal bearings (GBFJBs) and compares the test results with the predictions of a computational model. The experiments confirmed that the rotational synchronous frequency component dominates the behavior of the overall rotor vibrations, whereas the nonsynchronous components are insignificant, indicating the rotor-bearing system remains stable up to 100 krpm. The undamped natural frequency and imbalanced response of the rotor-bearing system are predicted when integrating the finite element model of the rotor-bearing system with the predictions of the bearing dynamic coefficients. The results are in good agreement with the experimental results. In addition, base excitation test results show that the small turbocompressor can endure large external forces and demonstrate limited rotor amplitudes. A simple single degreeof-freedom rotor model using the nonlinear stiffness of the GBFJBs can effectively predict the test results.

나선홈을 갖는 반구형 공기 베어링의 반경 방향 성능 측정 (Radial Performances of Spiral-Grooved Spherical Air Bearings)

  • 박근형;최정환;최우천;김권희;우기명;김승곤
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.23-30
    • /
    • 1999
  • This paper investigates the radial performance of self-acting spiral-grooved air bearing, used to support small high-speed rotating bodies. Repeatable runout, nonrepeatable runout, stiffness and supporting load are selected as the performance. The clearance between rotor and stator, the stator groove depth, and the rotating speed are chosen as three main parameters affecting the performances. Force application and displacement measurement are done in a noncontact manner, in order not to disturb operation: electromagnetic force is applied to the rotor and gap sensors are used to measure the displacement of the rotor. Experimental results show that repeatable runout decreases as speed, groove depth and clearance decrease. Nonrepeatable runout decreases as clearance decreases, and it has a minimum value at $5.5{\mu}m$ of grove depth and a maximum value at speed of 18.000rpm. Stiffness increases as speed increases and clearance decreases, and has a maximum value around $5.5{\mu}m$ of groove depth. The relationship between force and displacement is linear for small displacement, but becomes nonlinear for large displacement. Supporting load is linearly proportional to the stiffness, and it is a maximum value around $4.75{\mu}m$ of clearance.

  • PDF

고속 전동기용 2 패드 빔 타입 가스 포일 저널 베어링의 회전체동역학 성능 측정 (Rotordynamic Performance Measurements of a Two-Pad Beam-Type Gas Foil Journal Bearing for High Speed Motors)

  • 정권종;황성호;백두산;김태영;김태호
    • Tribology and Lubricants
    • /
    • 제38권5호
    • /
    • pp.205-212
    • /
    • 2022
  • This paper presents experimental measurements of the structural characteristics of a two-pad beam-type gas foil journal bearing and its rotordynamic performance for a high-speed motor-driven turbocompressor. The test bearing had two top foils and two beam foils, each with an arc length of ~180°. Each beam foil was etched to obtain 40 beams with six geometries of different lengths and widths. The insertion of beam foils into the bearing housing produces equivalent beam heights. The structural tests of the bearing with a non-rotating journal revealed a smaller bearing clearance and larger structural stiffness for the load-on-pad configuration than for the load-between-pads configuration. Rotordynamic performance measurements during driving tests up to 100 krpm demonstrated synchronous vibrations and subsynchronous vibrations with large amplitudes. The test was repeated after inserting the shim between the top foil and beam foil to reduce the bearing radial clearance. The reduced bearing clearance resulted in a reduction in the peak amplitude of the synchronous vibrations and an increase in the speed at which the peak amplitude occurred. In addition, the onset speed and amplitude of the subsynchronous vibrations were dramatically increased and diminished, respectively. The rotor coast-down tests at 100 krpm show that the reduction in the bearing clearance extends the time to rotor stop, thus implying an improvement in hydrodynamic pressure generation and a reduction in bearing frictional torque.

고관성부하용 전동기보호를 위한 속도감지형 과전류계전기 연구 (Study of Speed-biased Overcurrent Relay for High-Inertia Drive Motor)

  • 임진옥;조성돈;강인수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.506-508
    • /
    • 1995
  • The relay protection engineers are sometimes faced with the difficulties in full protection of high-inertia drive motors during acceleration period. The problem results from lower permitted locked rotor time of the motor compared with motor starting time. Even though the various types of protection relay and other device (Speed switch, Distance relay) are used, the full protections against abnormal starting conditions may not be available. So, the development of a new speed-biased overcurrent relay is suggested in this paper. This paper also presents that speed-biased overcurrent relay can fully protect the high-inertia motor during abnormal starting condition by computer simulation.

  • PDF

고속전철용 견인전동기 소음개선 (Noise Reduction of Traction Motor for High Speed Train)

  • 김정철;김대광;김봉철;박영호;최종묵
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.95-100
    • /
    • 2007
  • The traction motor for High Speed Train is being required reliability and stability for high-speed operation. And also required low noise level, high performance, compact size owing to the space and weight limitation for attaching to train, etc. As a result of requiring the low noise level and high power capacity, it is adopted forced-air-ventilation insead of self-ventilation that is generally used on electric multiple unit. Traction motor is cooled by cooling air through the air-ventilation hole. When the traction motor is operated with forced-air-ventilation, there is some abnormal noise in the specific RPM. This paper is dealing with the method to reduce the resonance phenomena by adopting the rotor blade.

  • PDF

보조동력장치 회전자 유동 및 출력특성에 관한 연구 (A Study on the Flow and Power Characteristics of Rotor in the APU)

  • 이중섭;정인국;윤지훈;서정세;이태의
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.805-810
    • /
    • 2011
  • Recently, Use of Auxiliary power unit(APU) is increasing by growing demand for improvement of insufficient electric power and installation of emergency generation devices in military tracked vehicles and civil markets. And the trend is that the units are demanded for smaller size, lighter weight and higher output power, etc to suit consumer demands. To achieve these, it is essential to develop high performance system. Therefore, in this study, it was conducted in numerical analysis to investigate flow characteristics of rotor in APU generator. Also output performance of APU applied on the rotor is analyzed by experimental method. As the result, higher rotating speed of rotor caused high air flow rate at suction and it leads to linear increase of discharging flow rate. The maximum theoretical power was achieved at 12 $m^3$/min of flow rate and, at that time, output power of generator was about 7.825 kW. Also, it can be confirmed the stabilization of output performance is achieved in about 2 seconds by experiment.

유량에 따른 축류홴의 익단누설와류 및 후류 특성 (Flow Characteristics of Wake Flow with Relation to a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan)

  • 김광용;장춘만
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.322-329
    • /
    • 2005
  • The flow characteristics in the blade passage and in the wake region of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From axial velocity distributions downstream of the fan rotor, large axial velocity decay near the rotor tip is observed at near stall condition, which results in large blockage compared to that at the design condition. Although the wake flow downstream of the rotor blade is clearly measured at all operating conditions, the trough of the high velocity fluctuation due to Karmann vortex street in the wake flow is mainly observed at a higher flow condition than the design flow rate.

엘리베이터를 위한 유도전동기의 에너지절감 및 고성능제어 (Control of Elevator Induction Motors with High Dynamic Performance and High Power Efficiency)

  • 김규식;김재윤;최주엽;송중호
    • 전력전자학회논문지
    • /
    • 제4권1호
    • /
    • pp.43-49
    • /
    • 1999
  • 본 연구에서는 비선형 시스템을 선형 시스템으로 변환시키는 미분기하이론에 기초를 둔 비선형 궤환 선형화 기법을 유도전동기와 같은 비선형 시스템의 제어에 응용함으로써 완전한 비간섭 시스템을 얻을수 있음을 보였다. 또한, 엘리베이터와 같은 부하의 정속도 운전시 효율제어를 위해 회전자 자속을 변화시킬 때 이의 영향을 받아 값이 바뀌는 인덕턴스와 온도에 따라 가장 변화가 심한 회전자저항을 위한 추정알고리즘을 제안하고 이의 성능을 평가해 보기 위하여 시뮬레이션과 실험을 수행하였다.

플라이휠 에너지 저장 장치용 복합재 로터 개발 (Development of a Composite Rotor for Flywheel Energy Storage System)

  • 김명훈;한훈희;김재혁;김성종;하성규
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.169-172
    • /
    • 2005
  • A flywheel system is an electromechanical energy storage device that stores energy by rotating a rotor. The rotating part, supported by magnetic bearings, consists of the metallic shaft, composite rims of fiber-reinforced materials, and a hub that connects the rotor to the shaft. The delamination in the fiber wound composite rotor often lowered the performance of the flywheel energy storage system. In this work, an advanced hybrid composite rotor with a split hub was designed to both overcome the delamination problem in composite rim and prevent separation between composite rim and metallic shaft within all range of rotational speed. It was analyzed using a three-dimensional finite clement method. In order to demonstrate the predominant perfom1ance of the hybrid composite rotor with a split hub, a high spin test was performed up to 40,000 rpm. Four radial strains and another four circumferential strains were measured using a wireless telemetry system. These measured strains were in excellent agreement with the FE analysis. Most importantly, the radial strains were reduced using the hybrid composite rotor with a split hub, and all of them were compressive. As a conclusion, a compressive pressure on the inner surface of the proposed flywheel rotor was achieved, and it can lower the radial stresses within the composite rotor, enhancing the performance of the flywheel rotor.

  • PDF