• 제목/요약/키워드: High speed injection molding

검색결과 52건 처리시간 0.025초

스팀사출성형에 의한 공정의 최적화 (Process optimization for the steam injection molding)

  • 문영대
    • Design & Manufacturing
    • /
    • 제9권2호
    • /
    • pp.10-15
    • /
    • 2015
  • The water has been the suitable for the cooling medium until now. But the water as cooling medium seem to have the limit for high speed injection. The steam plastic molding injection use the steam as the medium when raise the mold temperature. The weld line has been the major quality problems in a plastic injection parts to be difficult to be solved. These problems in injection-molded plastic parts are difficult to find the reason because these issues are usually in tradeoff realtions with each other. The purpose of this paper is to obtain the optimum injection moulding condition for improving the quality of plastic injection parts and to inquire the productivity improvement with the measured cycle time by steam plastic moluding injection. Based on these numerical results, the guidelines of mould design and injection processing condition were established. As a result, the improvement of quality and the reduction of cycle time was achieved.

  • PDF

품질기능전개와 신경망 회로를 이용한 사출성형 공정변수의 예측 (Estimation of Process Parameters Using QFD and Neural Networks in Injection Molding)

  • 고범욱;김종성;최후곤
    • 산업공학
    • /
    • 제21권2호
    • /
    • pp.221-228
    • /
    • 2008
  • The injection molding process is able to produce high precision manufactures as a single process with fast speed. However, the prices of both the mold and the molding machine are expensive, and the single process is very complex and difficult to compose of the exact relationship between the process setting conditions and the product quality. Therefore, the quality of a molded product often depends on a skillful engineer's operations in the design of both parts and molds. In this paper, the relationship between the process conditions and the defectiveness is built for better manufactures under settings of the appropriate parameters, and so it can reduce the setup time in the injection molding process. Quality Function Deployment (QFD) provides severe defectiveness factors along with the related process parameters. Also, neural networks estimate the relationship between defective factors and process setting parameters, and lead to reduce the defectiveness of molded parts.

초소형 IC 소켓 설계 및 제조 기술 (Design and Manufacturing of Narrow-pitched IC Sockets)

  • 윤선진;김종미;권오근
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.9-14
    • /
    • 2017
  • The design and manufacturing tehcnology of IC sockets beyond 0.3mm pitch were presented. We compared the developed IC socket with the conventional one especially on the core metal-insulation part. Advanced machining techniques were employed to provide high precision. Our wire electrodischarge machining and high speed machining centers were able to maintain the micro-scale precision. We performed an injection molding analysis using a commercial analysis tool to predict the performance of the developed IC socket. We found that the solidification of the plastic resin and the high level of the clamping force are responsible for the defects such as incomplete filling and short shot. From these results, we modified the IC socket and successfully remove the defects. We were also able to find out that the new design socket needs less maintenance cost.

분말 사출성형법으로 제조된 T42 고속도 공구강의 소결거동 (A Study on the Sintering Behavior of T42 High Speed Steel by Powder Injection Molding (PIM) Process)

  • 박동욱;김혜성;권영삼;조권구;임수근;안인섭
    • 한국분말재료학회지
    • /
    • 제19권2호
    • /
    • pp.117-121
    • /
    • 2012
  • Tool steels serve a large range of applications including hot and cold workings of metals and injection mouldings of plastics or light alloys. The high speed steels (HSS) are specifically used as cutting tools and wear parts because it has high strength, wear resistance and hardness along with appreciable toughness and fatigue resistance. From the view of HSS microstructure, it can be described as metallic matrix composites formed by a ferrous with a dispersion of hard and wear resistant carbides. The experimental specimens were manufactured using the PIM with T42 powders (50~80 vol.%) and polymer (20~50 vol.%). The green parts were debinded in n-hexane solution at $60^{\circ}C$ for 8 hours and thermal debinded at an $N_2-H_2$ mixed gas atmosphere for 8 hours. Specimens were sintered in high vacuum ($10^{-5}$ Torr) and various temperatures.

Multi-Color Chip-LED용 어레이 렌즈 개발에 관한 연구 (Development of Array-Lens for Multi-Color Chip-LED)

  • 최병기;이동길;장경천
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.50-55
    • /
    • 2007
  • The purpose of this research is to enhance the luminance of the LED and to improve the implementation of color by mounting an array lens on the LED without special technology in process. The workmanship of key components considering the economical efficiency and the injection molding technology for high quality of the product are essential to achieve it. In this paper, the mold was computer-aided was designed and manufactured by CAM software (NX4) and high speed machining center. the applied final machining conditions were 3,000-5,000mm/min feed speed, 15,000-25,000rpm and ${\Phi}0.3mm$ ball end-mill. And the Flow analysis was performed using the mold flow software(MPI) in order to get uniformity of resin. Injection conditions acquired by the flow analysis and the injection experiment are as follows. The cylinder temperature is $220-260^{\circ}C$, the mold temperature is $70-80^{\circ}C$, the injection time is about 1.2sec, the injection pressure and velocity is each 7.8-14.7Mpa, and the injection velocity is 0.8-1.2m/sec.

다수 빼기 사출성형에서 캐비티간 충전균형을 위한 새로운 런너의 설계 (A Novel Runner Design for Flow Balance of Cavities in Multi-Cavity Injection Molding)

  • 박서리;김지현;류민영
    • 폴리머
    • /
    • 제33권6호
    • /
    • pp.561-568
    • /
    • 2009
  • 소형 플라스틱 부품들은 대부분 다수 캐비티 빼기 사출금형에서 성형된다. 이러한 다수 빼기 캐비티 금형에서의 사출성형은 캐비티간의 흐름 균형이 중요하다. 캐비티간 흐름의 불균형은 성형품의 캐비티간 물성 및 품질의 편차를 초래한다. 캐비티간의 흐름균형은 런너와 게이트에서의 흐름균형을 통하여 이루어지게 되는데 런너와 게이트에서 기하학적인 균형을 이루어도 열적 불균형으로 캐비티간 흐름의 불균형을 초래한다. 본 연구에서는 캐비티간 흐름의 균형을 위해 고안한 스크류 타입의 런너을 이용하여 캐비티간 충전균형을 고찰하였다. 여러 형태의 스크류 런너에서 결정성 수지와 비결정성 수지, 그리고 점도가 높은 수지와 점도가 낮은 수지를 이용하여 캐비티간 흐름을 관찰하였다. 흐름의 균형은 성형조건 중 사출속도에 따라 다르게 나타나기 때문에 사출속도를 변화해 가며 관찰하였다. 실험 결과를 성형해석과 비교 검토하였으며 서로 잘 일치함을 확인할 수 있었다. 스크류 런너에서 수지가 흐르면서 스크류 채널을 따라 회전운동을 하여 스크류 단면에서 온도가 균일하게 됨을 확인하였다. 그리구 이러한 균일한 온도 때문에 캐비티간 흐름 균형이 이루어지고 있음을 확인하였다. 결론적으로 실험에 사용된 새롭게 고안된 스크류 타입의 런너는 캐비티간 충전균형을 이루는데 매우 효과적임을 실험과 해석을 통해 검증할 수 있었다.

쥬얼리 패턴제작시 주사경로생성시간 단축에 관한 연구 (The Study on the Reduction of Laser Scanning Path Creation Time during Jewellery Pattern Manufacturing)

  • 김태호;김수용;박재덕;김민주;전언찬
    • 한국CDE학회논문집
    • /
    • 제11권6호
    • /
    • pp.440-446
    • /
    • 2006
  • This study relates to the effect of forming time of injection path on the total process. The whole process can be divided into build process of forming path of injection and after treatment process. The total time required for the whole process could be reduced by reducing the forming time of injection path using SLC file to correct the problems of STL file that is the basic file format for high speed molding devices. First of all, I verify the forming time of injection path according to the conditions of STL file during the formation of injection path. And I verify problems using STL file during formation of injection path. And then I tried to solve problems of STL file by comparing between the formation time of injection path and the existing method using SLC files.

금형 소재용 다공질 재료의 개발과 특성 평가 (Development and Evaluation of the Characteristics of Porous Materials for a Mold)

  • 박선준;정성일;임용관;정해도;이석우;최헌종
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.35-42
    • /
    • 2004
  • At the large-sized mold fer injection molding, the remaining gas in the mold causes some problems with final products. In order to solve these problems, air-bent was drilled on the surface of mold. However, this method leaves the scar on the surface of a product. Therefore, porous material was developed to the removal of remaining gas in this study. Porcerax II, which is a commercialized porous material, were developed in USA. It requires the electric discharge machining(EDM) process to make pores on the surface of the materials. The electric discharge machining (EDM) process, however, cause the increase of the time and cost for the fabrication of the mold. In this study, high speed machining(HSM) process was applied to the fabrication of porous mold without electric discharge machining(EDM) process. Some characteristics of the developed materials machined by high speed machining(HSM) and electric discharge machining(EDM) including air-permeability and porosity were compared with those of Porcerax II. Besides, in order to be applied to the molding process, hardness and tensile & yield strength were compared between Porcerax II and developed materials.