• Title/Summary/Keyword: High speed fan

Search Result 119, Processing Time 0.03 seconds

Partial turbulence simulation and aerodynamic pressures validation for an open-jet testing facility

  • Fu, Tuan-Chun;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Baheru, Thomas
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.15-33
    • /
    • 2014
  • This paper describes partial turbulence simulation and validation of the aerodynamic pressures on building models for an open-jet small-scale 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. The wind characteristics pertained to the Atmospheric Boundary Layer (ABL) mean wind speed profile and turbulent fluctuations simulated in the facility. Both in the wind tunnel and the small-scale 12-Fan WOW these wind characteristics were produced by using spires and roughness elements. It is emphasized in the paper that proper spectral density parameterization is required to simulate turbulent fluctuations correctly. Partial turbulence considering only high frequency part of the turbulent fluctuations spectrum was simulated in the small-scale 12-Fan WOW. For the validation of aerodynamic pressures a series of tests were conducted in both wind tunnel and the small-scale 12-fan WOW facilities on low-rise buildings including two gable roof and two hip roof buildings with two different slopes. Testing was performed to investigate the mean and peak pressure coefficients at various locations on the roofs including near the corners, edges, ridge and hip lines. The pressure coefficients comparisons showed that open-jet testing facility flows with partial simulations of ABL spectrum are capable of inducing pressures on low-rise buildings that reasonably agree with their boundary-layer wind tunnel counterparts.

Humidification model and heat/water balancing method of PEMFC system for automotive applications (자동차용 연료전지 시스템의 가습모델과 열/물균형 유지방법)

  • Jung, Seung-Hun;Yoon, Seok-Ho;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.339-344
    • /
    • 2005
  • A PEMFC system model for FCEV was constructed and simulated numerically to examine the heat/water flow of the system and air/fuel humidification process for various operation conditions (ambient pressure /temperature/humidity, operating temperature, power load). We modeled PEMFC stack which can generate maximum electricity of about 80 kW. This stack consists of 400 unit cells and each unit cell has $250cm^2$ reacting area. Uniform current density and uniform operating voltage per each cell was assumed. The results show the flow characteristics of heat and water at each component of PEMFC system in macro-scale. The capacity shortage of the radiator occurred when the ambient was hot $(over\;40^{\circ}C)$ and power level was high (over 50 kW). In spite of some heat release by evaporation of water in stack, heat unbalance reached to 20kW approximately in such a severe operating condition. This heat unbalance could be recovered by auxiliary radiators or high speed cooling fan with additional cost. In cold environment, the capacity of radiator exceeded the net heat generation to be released, which may cause a problem to drop the operating temperature of stack. We dealt with this problem by regulating mass flow rate of coolant and radiator fan speed. Finally, water balance was not easily broken when we retrieved condensed and/or unused water.

  • PDF

A study on the reduction of emission by controlled cooling system in a diesel engine (냉각 시스템 제어에 따른 디젤 엔진의 배기가스 저감에 관한 연구)

  • Choi, Kyung-Wook;Cho, Won-Joon;Lee, Ki-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3294-3299
    • /
    • 2007
  • These days the exhaustion of petroleum resources and environmental problems are getting serious. Many researchers are focused on low emission and high performance vehicles. Therefore, we should concern about emission regulation when we design a new car. In this study, we investigated the characteristics of the traditional mechanical engine cooling systems which control the engine temperature using engine speed and wax type thermostat. This experiment used three components which are Radiator fan, water pump and water valve controlled by an electronic system based on the engine status (load, speed). We elucidated how different between traditional mechanical cooling system and electronic cooling system which control coolant temperature and coolant flow rate in a DI diesel engine in this paper. The results revealed a fuel saving and an emission (CO, HC) reduction on NEDC cycle.

  • PDF

Constraint Algorithm in Double-Base Number System for High Speed A/D Converters

  • Nguyen, Minh Son;Kim, Man-Ho;Kim, Jong-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.430-435
    • /
    • 2008
  • In the paper, an algorithm called a Constraint algorithm is proposed to solve the fan-in problem occurred in ADC encoding circuits. The Flash ADC architecture uses a double-base number system (DBNS). The DBNS has known to represent the multi-dimensional logarithmic number system (MDLNS) used for implementing the multiplier accumulator architecture of FIR filter in digital signal processing (DSP) applications. The authors use the DBNS with the base 2 and 3 to represent binary output of ADC. A symmetric map is analyzed first, and then asymmetric map is followed to provide addition read DBNS to DSP circuitry. The simulation results are shown for the Double-Base Integer Encoder (DBIE) of the 6-bit ADC to demonstrate an effectiveness of the Constraint algorithm, using $0.18{\mu}\;m$ CMOS technology. The DBIE’s processing speed of the ADC is fast compared to the FAT tree encoder circuit by 0.95 GHz.

Evaluation of Heat Balance for Cooling System of an Armored Installation in Small Space (좁은 공간 내의 밀폐형 장치 냉각시스템에 대한 열평형 평가)

  • Kim, Sung-Kwang;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the heat balance test of an engine was conducted, and the heat released to coolant is measured and corrected using a power adjustment factor for high fuel temperature to simulate heat rejection of the engine. An engine-converter matching simulation program which can compute the engine speed, transmission output speed, transmission input and output power is developed from the vehicle, transmission and engine performance curve. With this information and the engine heat rejection characteristics, the engine and transmission heat rejection rates can be determined at given condition. In analyzing the air mass flow, a sub program computing the air mass flow rate from the equation of the pressure balance between cooling fan static pressure rise and pressure losses of cooling components is developed.

Applied cases of advanced construction & engineering technology at Tower Palace III Project (타워팰리스 III 현장의 첨단 시공 및 엔지니어링 기술 적용사례)

  • Wang In-Soo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.202-213
    • /
    • 2003
  • Tower Palace III project is the highest residential and commercial high-rise complex building in Korea. In order to construct a high-rise building, advanced construction and engineering technology is required. Therefore, with more developed construction and engineering technology based upon accumulated knowledge, construction speed of 13.4 days per floor including finish work was achieved in this project. To achieve this project successfully, three main advanced construction technology were applied: 1) Construction methods for 3-day cycle of structural work and curtain wall, 2) Tact scheduling method for finish work, 3) Management system of material, labor, work, and information. Also, four main engineering technology were applied: 1) New material such as high -flowing concrete and high strength concrete of 800 kgf/cm2, 2) New method such as a pipe-cooling system of a cool water circulating type, 3) Mechanical system such as smart-fan controlling kitchen-ventilation system, 4) Electrical system such as false car system.

  • PDF

Sensorless control of a SPMSM for driving cooling fans (냉각 팬 구동을 위한 SPMSM의 센서리스 제어)

  • Kim, Sang-Hoon;Kim, Ji-Min
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.15-20
    • /
    • 2014
  • Recently, PMSMs(Permanent Magnet Synchronous Motors) have become increasingly popular in various high-performance motor drive applications. However, the high-performance drive of PMSMs needs a position sensor such as a resolver, which increases not only the price of the system but also reduces the system reliability. This paper is on the implementation of sensorless control of a SPMSM, which drives a fan for cooling in appliances. In this paper, the rotor position for high-performance drive of a SPMSM is derived from back electromotive force (EMF) information proportional to the rotor speed. Also, the initial rotor position information for start-up is estimated from a saturation phenomenon of inductance. The validity of the proposed sensorless drives was confirmed by the experiment on the SPMSM drive systems for cooling fans of refrigerators and laptop computers.

  • PDF

Numerical Analysis of A Compressor Type of Dehumidifier : (II) Heat Transfer (압축식 제습기에 대한 수치해석 연구 : (II) 열전달)

  • Duong, Xuan Quang;Nguyen, Huy Hai;Kim, Kyu-Mok;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.2
    • /
    • pp.92-99
    • /
    • 2018
  • A numerical analysis of a compressor dehumidifier has been conducted focusing on the air side heat transfer, which is a part of a series research on the dehumidifier. The moving reference frame was applied to the fan modeling, and the porous model was used for the evaporator and condenser modeling. Curve fitting obtained the inertial and viscous resistances parameters to the results of the physical model of the unit cell with actual shape of a fin tube. The porous model was validated within a reasonable computation time for the range of practical inlet velocity of a dehumidifier. A parametric study has been conducted for fin number, fan speed (i.e., air flow rate), and evaporator/condenser tube arrangement. ANOVA analysis showed the dependency of each parameter on the velocity and temperature uniformity, which are desirable for high performance of the dehumidifier.

Development of the Auto-Aging Test Controller for a Hydraulic Motor (유압모터 길들이기 자동시험 제어기 개발)

  • Jung, Gyu Hong;Shin, Dae Young;Seo, Dong Jin
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.28-34
    • /
    • 2015
  • Because heavy-duty construction vehicles such as excavators are required for good engine-room cooling capacity, a hydraulic gear motor is adopted in the cooling fan drive mechanism to actively control the output speed, instead of adopting the conventional ON/OFF type belt drive. While gear motors are normally limited to 140bars of operating pressure, those for the cooling fan are capable of operating at continuous pressures of up to 220bars. After assembly, all gear motors for high pressure must pass an aging test which is a kind of the wearing process between the gear teeth and motor housing. During the aging process with gradual pressure increments, gear sticking sometimes occurs due to abnormal wear, resulting in defects. This paper focuses on a gear-sticking free aging test controller that is designed together with the knowledge of an experienced operator and the analysis results of experimental data of the gear jamming phenomenon. From the aging experiment, it is demonstrated that the developed controller that can alter the setting pressure of the load pump is effective for stabilizing the abrupt increase in the motor input pressure, thus preventing the hydraulic motor from stopping. This is expected to be helpful for the reduction of defects and increase in productivity.

The stable design of radiant heat inside PCB circuit board device (PCB회로 보드장치내의 안정적 방열설계를 위한 연구)

  • Won, Jong-Wun;Lee, Jong-Hwi
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • In this study, the heat flow analysis compatible commercial code CFX 11 was used to develop the structure inside PCB circuit board devices, which could stable radiant heat as well as the cooling device within it. In case of modifying the arrangement of electronic parts on the PCB inside the multi channel temperature measurement board devices, radiant heat effects did not show a rising tendency, whereas the overall temperature went down in case of installing the vents in the outer case of PCB circuit board devices. In terms of installation location, it was the most appropriate to install it on the electronic parts with no heat. Besides, in case of mounting the fan as a cooling device by considering various user environments for multi channel temperature measurement board devices, the radiant heat effects were shown higher than in case of installing the vents, and the middle sections were the most appropriate to its installation location. In case of changing the wind quantity of the fan from its selected installation location, the best radiant heat effects were shown at high speed as expected.