• Title/Summary/Keyword: High speed Welding

Search Result 400, Processing Time 0.025 seconds

Tensile Strength Application Using a Definitive Screening Design Method in Friction Stir Welding of Dissimilar Cast Aluminum and High-Strength Steel with Pipe Shape (파이프 형상의 이종 주조알루미늄-고장력강의 마찰교반용접에서 확정선별설계법에 의한 인장강도 응용)

  • Choy, Lee-jon;Park, Seong-Hwan;Lee, Myung-Won;Park, Jae-Ha;Choi, Byeong-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.98-104
    • /
    • 2020
  • Recently, friction stir welding of dissimilar materials has become one of the biggest issues in lightweight and eco-friendly bonding technology. In this study, a lightweight torsion beam axle, which is an automobile chassis component, was used in the welding to cast aluminum material. The friction stir welding process of A357 cast aluminum and FB590 high-strength steel as well as the effects of the process parameters were investigated and optimized using a novel definitive screening design (DSD). ANOVA was used to predict the importance of the process parameters with 13 degradation experiments using the proposed DSD. Also, FSWed experiments were conducted using an optical microscope analysis to investigate the tensile strength behavior in the weld area. In addition to determining the interaction between the tool's rotational speed and the plunge speed, results indicate that the influence of the plunge depth was the most significant.

Microstructures and Mechanical Properties of GTD 111DS Welds by $CO_2$ Laser Welding ($CO_2$ 레이저를 이용한 GTD111DS 초합금 용접부의 미세조직과 기계적 성질)

  • Lee, Tack-Woon;Yang, Sung-Ho;Kim, Sang-Hun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.108-108
    • /
    • 2009
  • Precipitation hardening nickel base alloys strengthened by intermetallic compounds are extensively used to manufacture on the components of the hot section of gas turbine engines. To ensure structural stability and maintenance of strength properties for a long time, nickel alloys are normally subjected to complex alloying with elements to form ${\gamma}'$(gamma prime). Such alloys have a limited weldability, are normally welded in high temperature. However, laser welding have a merit that applies in room temperature as easy control of welding parameter and heat input. In this study, $CO_2$ laser welding is applied on STS304 plate with good ductility and precipitation hardening nickel base alloy (GTD111DS) used blade material. Also, several welding parameters are applied on powder, power and travel speed. There are no cracks in Rene 80 and IN 625 powder when STS304 plate is used. But IN 625 powder has no cracks and Rene 80 have some cracks in welds with GTD111DS substrate. Adjusting of welding parameter is tried to apply Rene 80 having a good strength compare to IN 625. In the result of adjusted welding parameter, optimized welding parameters are set with low power, low feed rate and high welding speed. Tensile strength of GTD111DS substrate with Rene 80 powder is same and over than the one of base metal in room temp and high temp($760^{\circ}C$).

  • PDF

Acoustic Emission Monitoring during Laser Spot Welding of Stainless Steel Sheets (스테인레스 박강판의 레이저 점 용접 시 음향방출 실시간 모니터링)

  • Lee Seoung Hwan;Choi Jung Uk;Choi Jang Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.60-67
    • /
    • 2005
  • Compared with conventional welding, laser spot welding offers a unique combination of high speed, precision and low heat distortion. This combination of advantages is attractive for manufacturing industries including automotive and electronics companies. In this paper, a real time monitoring scheme fur a pulsed Nd:YAG laser spot welding was suggested. Acoustic emission (AE) signals were collected during welding and analyzed for given process conditions such as laser power and pulse duration. A back propagation artificial neural network, with AE frequency content inputs, was used to predict the weldability of stainless steel sheets.

ButWelding Characteristics of SM45C and SUS 304 using a Nd:YAG laser (SM45C와 SUS304의 Nd:YAG 레이저 맞대기용접특성)

  • Yoo, Young-Tae;Ro, Kyoung-Bo;Shin, Ho-Jun;Kim, Ji-Hwan;Oh, Young-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1302-1308
    • /
    • 2003
  • Welding characteristics of austienite 304 stainless steel and SM45C using a continuous wave Nd:YAG laser are experimentally investigated. Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. This paper describes the weld ability of SM45C carbon steel and austienite 304 stainless steel for machine structural use by Nd:YAG laser.

  • PDF

Surface Friction Welding Technology for Joining of Metal Sheets (금속 박판재 접합을 위한 표면마찰용접 기술)

  • Lee C. G.;Kim S. J.;Yim C. D.;Han H. N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.192-195
    • /
    • 2004
  • Surface friction welding, SFW, is a newly developed solid state welding technology for joining of thin metal sheets. Workpieces are joined by frictional heat, shear deformation and plastic flow generated by friction between the rotating tool and surface of the workpiece. The SFW is an economical and environmentally conscious technology with high joining speed and excellent properties, and is expected to be used widely in various industries in the near future.

  • PDF

Effect of Process Parameters on Bead Formation in Nd:YAG Laser Welding of Thin Steels (저탄소 박판 강재의 Nd:YAG 레이저 용접부 형성에 미치는 공정변수의 영향)

  • 김기철;허재협
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.317-324
    • /
    • 2001
  • This study deals with high power Nd:YAG laser welding of thin steels for small pressure vessels. Full penetration welding at the overlap joint was performed so as to assure sufficient weld strength. Results showed that mid-depth weld size reduced drastically with increasing the travel speed. Position of focus had little effect on the bead formation even though short focal system was used. However, the shape factor and the bead width had closely related with the position of focus. Based on the microstructural inspection, acceptable weld was obtained when the overlap clearance was controlled up to 20% of the base metal thickness. In the case that the joint contained more clearance than the critical value, both the tensile shear strength and the tear strength were reduced. Results also demonstrated that shielding gases were proved to play a key role as far as the bead formation characteristics was taken into consideration. Blowing dry air through 5mm in diameter nozzle produced narrower bead cross-section than that of argon or nitrogen shielding.

  • PDF

Microstructures of Friction Stir Lap Weld in A5052-H112 Alloy (A5052-H112 합금의 겹치기 마찰교반접합 조직 특성)

  • Ko, Young-Bong;Lee, Joong-Hun;Park, Kyeung-Chae
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.17-24
    • /
    • 2009
  • The Friction Stir Welding(FSW) has mainly been used for making butt joints in Al alloys. Development of Friction Stir Lap Welding(FSLW) would expand the number of applications. Microstructure of FSLW in A5052-H112 alloy was investigated under varying rotation and welding speed. As the rotation speed was increased and the welding speed was decreased, a amount of heat was increased. As a result, bead interval was narrower, bead width are larger, and experimental bead interval was almost similar to theoretical bead interval. Typical microstructures of FSLW A5052-H112 alloy consist of three zones, including Stir Zone(SZ), Thermo-Mechanically Affected Zone(TMAZ) and Heat Affected Zone(HAZ). As a amount of heat was increased, average grain size was larger in three zones. Nevertheless, the aspect ratio was almost fixed for FSLW conditions. The misorientation of SZ, HAZ and TMAZ was examined. A large number of low angle grain boundaries, which were formed by severe plastic deformation, were showed in TMAZ as comparison with SZ and HAZ. Microhardness distribution was high in order of BM, SZ, TMAZ, and HAZ. The Micro-hardness distribution in HAZ, TMAZ of upper plate were lager than lower plate. Relationship between average grain size and microhardness was almost corresponded to Hall-Petch equation.

A Study on Remote CO2 Laser Welding for the Development of Automobive Parts (차체부품 개발을 위한 원격 CO2 레이저 용접에 관한 연구)

  • Song, Mun-Jong;Lee, Gyu-Hyun;Lee, Mun-Yong;Kim, Sok-Won
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.75-79
    • /
    • 2010
  • The Remote welding system(RWS) using $CO_2$ laser equipment has focusable distance of laser beam longer than 800 mm from workpiece and can deflect the laser beam by the scanner mirrors very rapidly. In the case of normal welding system based on robot, there is a limit to move the shortest path in short time and this causes interference between robot and workpiece. On the other hand, RWS is the optimized equipment to get big merits with advanced sequence of welding and short cycle time. However, there is still a pending task such as the control of plasma in the welding process of thick sheets therefore, it requires high power laser beam because of the absence of assist gas equipment in itself. In this study, high-tensile steel plates were overlap welded with $CO_2$ RWS for the production of car body and the influence of penetration depth according to the existence of assist gas was analyzed. Excellent tensile strength with enough width of molten zone independent to penetration depth was observed under welding condition with 3.6 kW laser power and 2.8 m/min welding speed without assist gas. Finally, the proto-type automotive parts were produced by applying the deduced optimal welding condition.

The Effect of Configuration and Surface Polishing in Tungsten Electrode Tip for Gas Tungsten Arc Welding on the Arc Characteristics (GTA용접용 텅스텐 전극팁의 형상과 연마 상태가 아크특성에 미치는 영향)

  • 조상명;서상균
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2001
  • The welding quality by Gas Tungsten Arc Welding shows very high level, but the welding speed is lower than that of gas metal arc welding. Also, the welding quality by automatic GTAW is variable as the arc characteristics is changed by the consumption of electrode tip. The purpose of this study is to investigate the relation between the properties of tungsten electrode tip and the various arc characteristics at high current region. In this study, the high welding current 200A was applied to the repeated arc start test and long term arcing test using the $\phi$3.2 tungsten electrodes with cone angle 30$^{\circ}$, 45$^{\circ}$, 60$^{\circ}$sharp tip, and 60$^{\circ}$surface polished (S.P.) sharp tip. It was confirmed that the maximum arc pressure by the initial electrode condition was highest in 45$^{\circ}$sharp tip, and the next in 60$^{\circ}$sharp tip, the last was in 30$^{\circ}$sharp tip and 60$^{\circ}$S.P.. But, the maximum arc pressure after the repeated arc start test and long term arcing test was decreased considerably. But, the maximum arc pressure was highest also in 45$^{\circ}$ sharp tip after the tests, the next was in 30$^{\circ}$sharp tip, and the last was in 60$^{\circ}$sharp tip and 60$^{\circ}$S.P.. The arc start characteristics was the most excellent in 60$^{\circ}$S.P., By long term arcing test, the lanthania included in tungsten electrode was extinguished at tip surface preferentially, therefore the arc characteristics of electrode tip got worse.

  • PDF

A Study of Weldability for Pure Titanium by Nd:YAG Laser(III) - Weld Properties of Edge Welding - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(III) - 에지 용접 특성 -)

  • Kim, Jong-Do;Kil, Byung-Lea;Kwak, Myung-Sub;Song, Moo-Keun
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.74-79
    • /
    • 2009
  • Titanium and titanium alloy can be reproduced immediately even if oxide films($TiO_2$) break apart in sea water. Therefore, since titanium demonstrates large specific strength and outstanding resistance to stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion in sea water environment, it has been widely applied to heat exchanger for ships. In particular, with excellent elongation, pure titanium may be deemed as optimal material for production of heat exchanger plate which is used with wrinkles formed for efficient heat exchange. Conventional plate type heat exchanger prevented leakage of liquid through insertion of gasket between plates and mechanical tightening by bolts and nuts, but in high temperature and high pressure environment, gasket deterioration and leakage occur, so heat exchanger for LPG re-liquefaction device etc do not use gasket but weld heat exchanger plate for use. On the other hand, since welded plate cannot be separated, it is important to obtain high quality reliable welds. In addition, for better workability and production performance, lasers that can obtain weldment with large aspect ratio and demonstrate fast welding speed even in atmospheric condition not in vacuum condition are used in producing products. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through quantitative analysis of oxygen and nitrogen and measurement of hardness as fundamental experiment for the evaluation of titanium laser welding, and evaluated the welding performance and mechanical properties of butt welding. This study welded specimens in various conditions by using laser and GTA welding machine to apply edge welding to heat exchanger, and evaluated the mechanical strength through tensile stress test. As a result of tensile test, laser weldment demonstrated tensile strength 4 times higher than GTA welds, and porosity could be controlled by increasing and decreasing slope of laser power at overlap area.