• Title/Summary/Keyword: High spectral resolution

Search Result 524, Processing Time 0.03 seconds

Test Application of KOMPSAT-2 to the Detection of Microphytobenthos in Tidal Flats

  • Won Joong-Sun;Lee Yoon-Kyung;Choi Jaewon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.249-252
    • /
    • 2005
  • Microphytobenthos bloom from late January to early March in Korean tidal flats. KOMPSAT-2 will provide multi-spectral images with a spatial resolution of 4 m comparable with IKONOS. Using IKONOS and Landsat data, algal mat detection was tested in the Saemangeum area~ Micro-benthic diatoms are abundant and a major primary product in the tidal flats. A linear spectral unmixing (LSU) method was applied to the test data. LSU was effective to detect algal mat and the classified algal mat fraction well correlated with NDVI image. Fine grained upper tidal flats are generally known to be the best environment for algal mat. Algal mat thriving in coarse grained lower tidal flats as well as upper tidal flats were reported in this study. A high resolution multi-spectral sensor in KOMPSAT-2 will provide useful data for long-term monitoring of microphytobenthos in tidal flats.

  • PDF

The Endmember Analysis for Sub-Pixel Detection Using the Hyperspectral Image

  • Kim, Dae-Sung;Cho, Young-Wook;Han, Dong-Yeob;Kim, Young-Il
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.732-734
    • /
    • 2003
  • In the middle -resolution remote sensing, the Ground Sampled Distance(GSD) sensed and sampled by the detector is generally larger than the size of objects(or materials) of interest, in which case several objects are embedded in a single pixel and cannot be detected spatially. This study is intended to solve this problem of a hyperspectral data with high spectral resolution. We examined the detection algorithm, Linear Spectral Mixing Model, and also made a test on the Hyperion data. To find class Endmembers, we applied two methods, Spectral Library and Geometric Model, and compared them with each other.

  • PDF

Approximate Overdetermined Method for Spectral Estimation (스펙트럼 추정을 위한 근사 과결정 방식)

  • 이철희;정찬수;양흥석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.4
    • /
    • pp.232-239
    • /
    • 1988
  • The approximate overdetermined method is proposed for high resolution spectral estimation in case of short data record length or narrow band signal. And a new recursive AR parameter estimation is derived in the form of fast algorithm. For ARMA spectral estimation, two stage procedure is used in estimating ARMA parameters. First AR parameters are estimated by using the modified Yule-Walker equations, and then MA parameters are implicitly estimated by estimating numerator spectral(NS) coefficients.

  • PDF

Image Fusion Methods for Multispectral and Panchromatic Images of Pleiades and KOMPSAT 3 Satellites

  • Kim, Yeji;Choi, Jaewan;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.413-422
    • /
    • 2018
  • Many applications using satellite data from high-resolution multispectral sensors require an image fusion step, known as pansharpening, before processing and analyzing the multispectral images when spatial fidelity is crucial. Image fusion methods are to improve images with higher spatial and spectral resolutions by reducing spectral distortion, which occurs on image fusion processing. The image fusion methods can be classified into MRA (Multi-Resolution Analysis) and CSA (Component Substitution Analysis) approaches. To suggest the efficient image fusion method for Pleiades and KOMPSAT (Korea Multi-Purpose Satellite) 3 satellites, this study will evaluate image fusion methods for multispectral and panchromatic images. HPF (High-Pass Filtering), SFIM (Smoothing Filter-based Intensity Modulation), GS (Gram Schmidt), and GSA (Adoptive GS) were selected for MRA and CSA based image fusion methods and applied on multispectral and panchromatic images. Their performances were evaluated using visual and quality index analysis. HPF and SFIM fusion results presented low performance of spatial details. GS and GSA fusion results had enhanced spatial information closer to panchromatic images, but GS produced more spectral distortions on urban structures. This study presented that GSA was effective to improve spatial resolution of multispectral images from Pleiades 1A and KOMPSAT 3.

A CLASSIFICATION METHOD BASED ON MIXED PIXEL ANALYSIS FOR CHANGE DETECTION

  • Jeong, Jong-Hyeok;Takeshi, Miyata;Takagi, Masataka
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.820-824
    • /
    • 2003
  • One of the most important research areas on remote sensing is spectral unmixing of hyper-spectral data. For spectral unmixing of hyper spectral data, accurate land cover information is necessary. But obtaining accurate land cover information is difficult process. Obtaining land cover information from high-resolution data may be a useful solution. In this study spectral signature of endmembers on ASTER acquired in October was calculated from land cover information on IKONOS acquired in September. Then the spectral signature of endmembers applied to ASTER images acquired on January and March. Then the result of spectral unmxing of them evauateted. The spectral signatures of endmembers could be applied to different seasonal images. When it applied to an ASTER image which have similar zenith angle to the image of the spectral signatures of endmembers, spectral unmixing result was reliable. Although test data has different zenith angle from the image of spectral signatures of endmembers, the spectral unmixing results of urban and vegetation were reliable.

  • PDF

Histogram Matching of Sentinel-2 Spectral Information to Enhance Planetscope Imagery for Effective Wildfire Damage Assessment

  • Kim, Minho;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.517-534
    • /
    • 2019
  • In abrupt fire disturbances, high quality images suitable for wildfire damage assessment can be difficult to acquire. Quantifying wildfire burn area and severity are essential measures for quick short-term disaster response and efficient long-term disaster restoration. Planetscope (PS) imagery offers 3 m spatial and daily temporal resolution, which can overcome the spatio-temporal resolution tradeoff of conventional satellites, albeit at the cost of spectral resolution. This study investigated the potential of augmenting PS imagery by integrating the spectral information from Sentinel-2 (S2) differenced Normalized Burn Ratio (dNBR) to PS differenced Normalized Difference Vegetation Index (dNDVI) using histogram matching,specifically for wildfire burn area and severity assessment of the Okgye wildfire which occurred on April 4th, 2019. Due to the difficulty in acquiring reference data, the results of the study were compared to the wildfire burn area reported by Ministry of the Interior and Safety. The burn area estimates from this study demonstrated that the histogram-matched (HM) PS dNDVI image produced more accurate burn area estimates and more descriptive burn severity intervals in contrast to conventional methods using S2. The HM PS dNDVI image returned an error of only 0.691% whereas the S2 dNDVI and dNBR images overestimated the wildfire burn area by 5.32% and 106%, respectively. These improvements using PS were largely due to the higher spatial resolution, allowing for the detection of sparsely distributed patches of land and narrow roads, which were indistinguishable using S2 dNBR. In addition, the integration of spectral information from S2 in the PS image resolved saturation effects in areas of low and high burn severity.

Evaluation of Quality Improvement Achieved by Deterministic Image Restoration methods on the Pan-Sharpening of High Resolution Satellite Image (결정론적 영상복원과정을 이용한 고해상도 위성영상 융합 품질 개선정도 평가)

  • Byun, Young-Gi;Chae, Tae-Byeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.471-478
    • /
    • 2011
  • High resolution Pan-sharpening technique is becoming increasingly important in the field of remote sensing image analysis as an essential image processing to improve the spatial resolution of original multispectral image. The general scheme of pan-sharpening technique consists of upsampling process of multispectral image and high-pass detail injection process using the panchromatic image. The upsampling process, however, brings about image blurring, and this lead to spectral distortion in the pan-sharpening process. In order to solve this problem, this paper presents a new method that adopts image restoration techniques based on optimization theory in the pan-sharpening process, and evaluates its efficiency and application possibility. In order to evaluate the effect of image restoration techniques on the pansharpening process, the result obtained using the existing method that used bicubic interpolation were compared visually and quantitatively with the results obtained using image restoration techniques. The quantitative comparison was done using some spectral distortion measures for use to evaluate the quality of pan-sharpened image.

GENERATION OF FOREST FRACTION MAP WITH MODIS IMAGES USING ENDMEMBER EXTRACTED FROM HIGH RESOLUTION IMAGE

  • Kim, Tae-Geun;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.468-470
    • /
    • 2007
  • This paper is to present an approach for generating coarse resolution (MODIS data) fraction images of forested region in Korea peninsula using forest type area fraction derived from high resolution data (ASTER data) in regional forest area. A 15-m spatial resolution multi-spectral ASTER image was acquired under clear sky conditions on September 22, 2003 over the forested area near Seoul, Korea and was used to select each end-member that represent a pure reflectance of component of forest such as different forest, bare soil and water. The area fraction of selected each end-member and a 500-m spatial resolution MODIS reflectance product covering study area was applied to a linear mixture inversion model for calculating the fraction image of forest component across the South Korea. We found that the area fraction values of each end-member observed from high resolution image data could be used to separate forest cover in low resolution image data.

  • PDF

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.

EVALUATION OF THE RADIOMETRIC AND SPECTRAL CHARACTERISTICS OF THE CAISS

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.243-246
    • /
    • 2008
  • The Compact Airborne Imaging Spectrometer System (CAISS) was jointly designed and developed as the hyperspectral imaging system by Korea Aerospace Research Institute (KARI) and ELOP inc., Israel. The primary mission of the CAISS is to acquire and provide full contiguous spectral information with high quality spectral and high spatial resolution for advanced applications in the field of remote sensing. The CAISS consists of six physical units; the camera system, the gyro-stabilized mount, the jig, the GPS/INS, the power inverter and distributor, and the operating system. These subsystems shall be tested and verified in the laboratory before the flight. Especially the camera system of the CAISS shall be calibrated and validated with the calibration equipments such as the integrated sphere and spectral lamps. To improve data quality and availability, it is the most important to understand the mechanism of hyperspectral imaging system and the radiometric and spectral characteristics. This paper presents the major characteristics of camera system on the CAISS and summarizes the results of radiometric and spectral experiment during preliminary system verification.

  • PDF