• 제목/요약/키워드: High shear rate

검색결과 353건 처리시간 0.026초

볼나사 그루브 상사비 결정에 관한 연구 (A Study on the Groove Design in Ball Screws)

  • 박철우;김대은;이상조
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.154-162
    • /
    • 1996
  • Ball screws are commonly used in linear motion feeding systems of various machine tools and automated systems. They are known to have relatively little backlash, high precision and efficiency compared to ordinary lead screws. Furthermore, the effectiveness of ball screw has made it the preferred choice of many newly developed high speed precision feeding units. The motivation of this work is to establish the groove edsigh basis of ball screws for the reduction of contact fatigue failure. In most instances, fatigue failure between ball and shaft groove is due to excessive contact pressure. Especially, the excessive load is causative of plastic flow below the contact surface, which can contribute to surface failure. But, in spite of small load, if groove conformity rate is large, contact pressure is increased and internal shear stress reach the yield value of the material. In such a point, the authors deal with design procedure for deciding the permissible conformity rate of a ball screw groove with the computational evaluation of contact pressure and maximum shear stress.

Numerical investigation on seismic performance of reinforced rib-double steel plate concrete combination shear wall

  • Longyun Zhou;Xiaohu Li;Xiaojun Li
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.78-91
    • /
    • 2024
  • Double steel plate concrete composite shear wall (SCSW) has been widely utilized in nuclear power plants and high-rise structures, and its shear connectors have a substantial impact on the seismic performance of SCSW. Therefore, in this study, the mechanical properties of SCSW with angle stiffening ribs as shear connections were parametrically examined for the reactor containment structure of nuclear power plants. The axial compression ratio of the SCSW, the spacing of the angle stiffening rib arrangement and the thickness of the angle stiffening rib steel plate were selected as the study parameters. Four finite element models were constructed by using the finite element program named ABAQUS to verify the experimental results of our team, and 13 finite element models were established to investigate the selected three parameters. Thus, the shear capacity, deformation capacity, ductility and energy dissipation capacity of SCSW were determined. The research results show that: compared with studs, using stiffened ribs as shear connectors can significantly enhance the mechanical properties of SCSW; When the axial compression ratio is 0.3-0.4, the seismic performance of SCSW can be maximized; with the lowering of stiffener gap, the shear bearing capacity is greatly enhanced, and when the gap is lowered to a specific distance, the shear bearing capacity has no major affect; in addition, increasing the thickness of stiffeners can significantly increase the shear capacity, ductility and energy dissipation capacity of SCSW. With the rise in the thickness of angle stiffening ribs, the improvement rate of each mechanical property index slows down. Finally, the shear bearing capacity calculation formula of SCSW with angle stiffening ribs as shear connectors is derived. The average error between the theoretical calculation formula and the finite element calculation results is 8% demonstrating that the theoretical formula is reliable. This study can provide reference for the design of SCSW.

TiC-Mo 고용체 단결정의 고온 압축변형 특성 (Deformation Property of TiC-Mo Solid Solution Single Crystal at High Temperature by Compression Test)

  • 신순기
    • 한국재료학회지
    • /
    • 제24권11호
    • /
    • pp.625-631
    • /
    • 2014
  • To investigate the deformation properties of TiC-(5-20) mol% Mo solid solution single crystals at high temperature by compression testing, single crystals of various compositions were grown by the radio frequency floating zone technique and were deformed by compression at temperature from 1250K to 2270K at strain rates from $5.1{\times}10^{-5}$ to $5.9{\times}10^{-3}/s$. The plastic flow property of solid solution single crystals was found to be clearly different among a three-temperature range (low, intermediate and high temperature ranges) whose boundaries were dependent on the strain rate. From the observed property, we conclude that the deformation in the low temperature range is controlled by the Peierls mechanism, in the intermediate temperature range by the dynamic strain aging and in the high temperature range by the solute atmosphere dragging mechanism. The work softening tends to become less evident with an increasing experimental temperature and with a decreasing strain rate. The temperature and strain rate dependence of the critical resolved shear stress is the strongest in the high temperature range. The curves are divided into three parts with different slopes by a transition temperature. The critical resolved shear stress (${\tau}_{0.2}$) at the high temperature range showed that Mo content dependence of ${\tau}_{0.2}$ with temperature and the dependence is very marked at lower temperature. In the higher temperature range, ${\tau}_{0.2}$ increases monotonously with an increasing Mo content.

토석류 유동성 평가를 위한 링 전단시험장치 개발 및 활용 (Ring-shear Apparatus for Estimating the Mobility of Debris Flow and Its Application)

  • 정승원;;송영석
    • 대한토목학회논문집
    • /
    • 제33권1호
    • /
    • pp.181-194
    • /
    • 2013
  • 산사태는 토사, 거석, 유목 등 산사태 물질의 중력사면 이동현상이다. 산사태는 수리학적, 지형학적, 지반공학적 요인에 따라 다양한 흐름 및 퇴적특성을 보인다. 흐름특성은 아주 느리게 움직이는 산사태(활동, 이류 등)에서 아주 빠르게 움직이는 산사태(토석사태, 토석류 등)까지 다양하다. 이런 점에서 산사태 발생과 확산 메커니즘의 이해를 위해 전단변형률에 따른 전단강도특성에 대한 연구가 필요하다. 본 연구는 한국형 산사태에 적합한 링 전단시험장치의 개발과 활용성에 대한 것이다. 링 전단시험장치는 산사태 유형별 피해 및 영향성 평가에 사용되는 전단강도를 측정할 수 있으며, 전단속도에 따른 산사태의 유동성을 평가하기 위한 장치이다. 비배수 전단강도 측정용 링 전단시험장치는 기존에 개발된 링 전단시험기의 수정보완형으로 '포화-압밀-배수-전단' 순으로 시험조건을 자유롭게 조절할 수 있다. 링 전단상자내 흙 시료의 전단강도의 정확한 측정을 위해 미끄럼 방지, 밀폐성 및 회전성 향상 기능을 갖춘 시험장치이다. 링 전단시험장치는 모래와 자갈 시료에 대한 예비실험을 수행하였으며 기존 시험결과와 비교하여 신뢰할 만한 결과를 확인하였다. 회전속도 100 mm/sec 로 구속할 때 배수조건에 따른 일시적 액상화 현상으로 인한 강도저하 현상이 관측되며, 전단면에 따른 입자파쇄 현상이 뚜렷하게 나타났다. 마지막으로 토석류 유변학에 기초하여 링 전단시험장치를 이용한 산사태 유동성 평가기법을 제안하였다.

역탄도 기법을 이용한 탄소섬유/열경화성수지 복합재 그루브의 파단 특성 연구 (Study on Evaluation of Carbon Fiber Reinforced Composite Groove Using Inverse Ballistics Technology)

  • 최재호;박인서;송흥섭;박관진
    • Composites Research
    • /
    • 제17권2호
    • /
    • pp.15-20
    • /
    • 2004
  • 나사산을 가지는 구조재료는 높은 전단 응력을 한 방향으로 전달해 주는 용도로 많이 사용되며, 이를 응용하여 고속의 충격에너지나 전단하중에 견별 수 있는 기어 모양의 부품 등 항공 및 군수용 재료에 적용되어왔다. 최근에는 재료를 보다 경량화 하려는 노력의 일환으로 기존의 금속재료를 섬유강화 고분자 수지계 복합재료로 대체하기 위한 연구가 활발히 진행되고 있다. 본 연구에서는 탄소섬유/열경화성 수지계 복합재를 사용하여 나사산(groove)을 가지는 시편을 제작한 뒤 역탄도 기법으로 고속변형 특성 평가를 실시하였고, 이를 통하여 군수용 부품 재료로의 적용 가능성을 타진해 보았다.

Numerical simulation of the effect of bedding layer geometrical properties on the shear failure mechanism using PFC3D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.611-620
    • /
    • 2018
  • In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results shows that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilize in failure process. Also the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear test tensile strength was increased by increasing the layer thickness.

Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.507-517
    • /
    • 2018
  • In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly punch shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results show that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilizes in failure process. Also, the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear punch test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear punch test tensile strength was increased by increasing the layer thickness.

하중의 주파수에 지배받는 흙의 동적거동을 고려하는 등가선형해석방법 개발 (Development of equivalent linear algorithm procedure that accounts for the loading frequency dependent soil behavior)

  • 박두희;이현우;이승찬;김재연;천병식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.617-624
    • /
    • 2006
  • Site response analysis is widely used in estimating local seismic site effects. The soil behavior in the analysis is assumed to be Independent of the rate of the seismic loading laboratory results, however, indicate that cohesive soil behavior is greatly influenced by the rate of loading. A new equivalent linear analysis method is developed that accounts for the rate-dependence of soil behavior and used to perform a series of one dimensional site response analyses. Results indicate that while rate-dependent shear modulus has limited influence on computed site response, rate-dependent soil damping greatly filters out high frequency components of the ground motion and thus results in lower response.

  • PDF

스마트 폰 기반 3D 프린팅 칩을 이용한 적혈구 변형성 측정 (Measurement of RBC (red blood cell) deformability using 3D Printed Chip combined with Smartphone)

  • 이수환;홍현지;염은섭;송재민
    • 한국가시화정보학회지
    • /
    • 제18권3호
    • /
    • pp.103-108
    • /
    • 2020
  • RBC (red blood cell) deformability is one of factors inducing blood shear thinning effect. Reduction of RBC deformability increases blood viscosity in high shear region. In this study, 3D printed chip with proper distribution of wall shear rate (WSR) was proposed to measure RBC deformability of blood samples. To fabricate 3D printed chip, the design of 3D printed chip determined through numerical simulation was modified based on the resolution of the 3D printer. For the estimation of pressure drop in the 3D printed chip, two bypass outlets with low and high WSR are exposed to atmospheric pressure through the needles. By positioning the outlet of needles in the gravity direction, the formation of droplets at bypass outlets can be captured by smartphone. Through image processing and fast Fourier transform (FFT) analysis, the frequency of droplet formation was analyzed. Since the frequency of droplet formation is related with the pressure at bypass, high pressure drop caused by reduction of RBC deformability can be estimated by monitoring the formation of blood droplets using the smartphone.

Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won;Kim Yong-Seok;Chang Gap-Shik
    • Fibers and Polymers
    • /
    • 제7권2호
    • /
    • pp.129-138
    • /
    • 2006
  • Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.