• Title/Summary/Keyword: High shear rate

Search Result 353, Processing Time 0.025 seconds

A Study on Fracture Behavior in Shear Band during Micro Hole Punching Process (미세 홀 펀칭시 전단 파괴 거동 연구)

  • 유준환;임성한;주병윤;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.230-235
    • /
    • 2003
  • In the micro hole punching, the size and shape of burr and burnish zone are very important factors to evaluate quality of micro holes which depend on punch-die clearance, stain rate, workpiece material and etc. To get micro holes with small burr and wide burnish zone for industrial demands, not only the parametric study but also a study on fracture behavior in shear band are necessary. In this study, 100 $\mu\textrm{m}$, 25 $\mu\textrm{m}$ micro holes in diameter were fabricated on brass (Cu63/Zn37) and SUS 316 foils as aspect ratio 1:1, and the characteristics of micro holes was investigated comparing with man holes over several mm by scanning electron microscopic views and section views. Like macro hole, micro hole is also composed of 4 portions, rollover, burnish zone, fracture zone and it shows similar fracture behavior in shear band, but? by high strain rate (10$^2$∼ 10$^3$s$\^$-1/) unlike macro hole fabrication and increment of relative grain size several different results are shown.

  • PDF

A Study on Shear Fracture Behavior of Metal in Micro Hole Punching Process (금속 소재의 미세 홀 펀칭 시 전단 파괴 거동 연구)

  • 유준환;임성한;주병윤;오수익
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.314-319
    • /
    • 2003
  • In the micro hole punching, the size and shape of burr and burnish zone are very important factors to evaluate quality of micro holes which depend on punch-die clearance, strain rate, workpiece material and etc. To get micro holes with small burr and wide burnish zone for industrial demands, not only the parametric study but also a study on fracture behavior in shear band are necessary. In this study, 100 $\mu$m, 25 $\mu$m micro holes in diameter were fabricated on brass (Cu63/Zn37) and SUS 316 foils as aspect ratio 1:1, and the characteristics of micro holes was investigated comparing with those of macro holes over several mm by scanning electron microscopic views and section views. Like macro hole, micro hole is also composed of 4 portions, rollover. burnish zone, fracture zone and burr, and it shows similar fracture behavior in shear band. But by high strain rate (10$^2$∼10$^3$s$^{-1}$ ) condition unlike that of macro hole fabrication and by the increment of relative grain size in the direction of the workpiece thickness, fracture zone is not observed.

Preflocculation of GCC with Cationic PAM and Cationic Starch and the Influence of Their Dosage and Shear Rate on Prefloc Size (양이온성 PAM과 양성전분에 의한 GCC의 선응집과 이들의 투입량과 전단속도가 선응집체의 크기에 미치는 영향)

  • Lee, Kyong-Ho;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.4 s.117
    • /
    • pp.1-9
    • /
    • 2006
  • Increasing the filler content of sheet provides an opportunity for saving production cost through fiber replacement with relatively low-priced filler. But increasing the filler content tends to decrease the strength of paper and filler retention. To overcome these problems, preflocculation technology of fillers has been suggested. To evaluate the effect cationic polymers on the size and size distribution of preflocculated GCC and their shear stability, cationic PAM and cationic starch were used. Results showed that cationic PAM formed large prefloc at low dosage. It was required to add 15 times as high as cationic starch to cationic PAM to obtain the same size prefloc. But preflocs formed with cationic starch was superior in shear stability to those formed with cationic PAM. With the increase of shear rate the size of preflocs decreased. Greater amount of small preflocs or un-flocculated fillers was observed when the dosage of polymers was low and this ended up low ash retention in handsheets.

Flow Properties of Water Additive Corn-Cob-Mix for Handling by Pump (수분(水分)첨가된 옥수수(Corn-Cob-Mix)의 펌프 운송(運送) 시(時)의 유체성질(流體性質) 구명(究明))

  • Oh, I.H.;Heege, H.J.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 1989
  • The flow properties of water added com-cob-mix(CCM) were studied in order to provide basic information for designing its pumping system. For the study, a model system similar to actual situation was constructed. From the experiment, it can be concluded that the flow properties of the water added CCM has close relationship with its moisture content as follows; 1. The pressure drop caused by friction was very low when the moisture content of water added CCM was more than 70%. However, when the moisture content of the material is about 60%, the pressure drop increases up to 10 kPa/m at low pumping speed, and 20 kPa/m at high pumping speed, respectively. 2. The water added CCM having about 65% moisture content showed pseudo-plastic flow characteristics. 3. As the moisture content of the material decreases, the shear stress increases more rapidly than the shear rate does. Finally, below approximately 60% moisture, the shear stress becomes a linear relationship with the shear rate. 4. It was possible to pump the material having the moisture content down to 58% through a pipe having 80 mm diameter by a pump operating at 234 rpm. However, by either increasing the diameter of the pipe or decreasing the pumping speed, it can be possible to pump the material having lower moisture content than 55%.

  • PDF

In-vitro study on the hemorheological characteristics of chicken blood in microcirculation

  • Ji, Ho-Seong;Lee, Jung-Yeop;Lee, Sang-Joon
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.2
    • /
    • pp.89-95
    • /
    • 2007
  • The flow characteristics of chicken blood in a micro-tube with a $100{\mu}m$ diameter are investigated using a micro-Particle Image Velocimetry (PIV) technique. Chicken blood with 40% hematocrit is supplied into the micro-tube using a syringe pump. For comparison, the same experiments are repeated for human blood with 40% hematocrit. Chicken blood flow has a cell-free layer near the tube wall, and this layer's thickness increases with the increased flow speed due to radial migration. As a hemorheological feature, the aggregation index of chicken blood is about 50% less than that of human blood. Therefore, the non-Newtonian fluid features of chicken blood are not very remarkable compared with those of human blood. As the flow rate increases, the blunt velocity profile in the central region of the micro-tube sharpens, and the parabolicshaped shear stress distribution becomes to have a linear profile. The viscosity of both blood samples in a low shear rate condition is overestimated, while the viscosity in a high shear rate range is underestimated due to radial migration and the presence of a cell-depleted layer.

Experimental Evaluation of Seismic Performance for Seismic Isolation Bearings (지진격리장치의 내진성능에 관한 실험적 평가)

  • Oh, Ju;Lee, Jae-Uk;Lim, Hyung-Ju;Kim, Hyung-Oh
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1126-1131
    • /
    • 2010
  • Experimental studies for the high damping rubber bearing, lead rubber bearing and natural rubber bearing, those are often used to improve the seismic capacity if the structure recently, are conducted to evaluate the seismic capacity of the seismic isolation bearings. The shear stiffness of the bearings decrease and the shear strain amplitude or the constant axial load level increase, but not sensitive to the strain rate effect. Bearings are strong for the axial compression but weak for the axial tension.

  • PDF

A Shear Strength Characteristics in Deep-sea Sediment from the Clarion-Clipperton Fracture Zone, Northeast Equatorial Pacific (북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 전단강도 특성)

  • 지상범;강정극;김기현;박정기;손승규;고영탁
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.255-267
    • /
    • 2004
  • Deep-sea surface sediments acquired by multiple corer from 69 stations in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific, were analyzed for shear strength properties to understand sedimentological process. The pelagic red clay from northern part of study area shows low average shear strength(4.4 kPa), while the siliceous sediment from middle area shows high(6.3 kPa). The calcareous sediment from southern area shows very low average shear strength(3.4 kPa), and transitional sediment between middle and southern area shows intermediate value(3.8 kPa) between siliceous and calcareous sediment. The depth profiles of average shear strength of pelagicred clay show gradual increment with depth due to decrease of water content with depth by general consolidation process. On the other, abrupt increment of average shear strength with depth in siliceous sediment is related to sedimentary hiatus. The very low shear strength in calcareous sediment is linked to very high sedimentation rate ofsouthern area compared with other study area.

A Study on the Shear Behavior of Reinforced Concrete Beams Using of Cockle Shells as Fine Aggregate (고막 패각을 잔골재로 사용한 철근콘크리트 보의 전단 거동에 관한 연구)

  • Kim, Jeong-Sup;Shin, Yong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.89-95
    • /
    • 2004
  • 1) As result of specimen with shear reinforcing bar of reinforced concrete beam, ductile coefficient of specimen was high in specimen containing Cockle shells based on non-mixed specimen. In increase rate of specimens, yield strength was similar in specimens containing Cockle shells and non-mixed specimens and maximum strength was higher in specimen containing Cockle shells. 2) To sum up the above experimental results, it is found that using splitted Cockle shells as aggregate for concrete by 10%~ 15% showed the same or higher compressive strength and shear strength as concretes using general aggregate and it can be used as substitute aggregate of concrete. It is considered that for future use of splitted Cockle shells as substitute concrete aggregate, continuous researches of its durability, applicability and economy are needed.

Formation of Shear Texture and Microstructure in AA3004 Sheet (AA3004에서 전단변형 미세조직 및 집합조직의 형성)

  • 이강노;김종국;김훈동;황병복;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.184-186
    • /
    • 2002
  • The evolution of texture and microstructure during warm rolling and subsequent annealing in aluminium 3004 alloy sheet was investigated by X-ray texture measurements and microstructure observations. Warm rolling at 250$^{\circ}C$ led to the development of strong through thickness texture gradients with shear textures at the surface layer and a regular rolling texture in the center of the sheets. FEM simulations indicated that these texture gradients are caused by pronounced strain gradients throughout the sheet thickness. Upon recrystallization annealing, in the sheet center the characteristic cube-recrystallization texture developed, while in the surface layers with a pronounced shear texture continuous recrystallization took place which led to the formation of a very fine grained microstructure. It is concluded that the very complex strain history in the near-surface layers together with the resulting high work-hardening rate gave rise to the formation of the ultra-fine grains with an average size smaller than 2$\mu\textrm{m}$.

  • PDF

A Review on Structural Behavior, Design, and Application of Ultra-High-Performance Fiber-Reinforced Concrete

  • Yoo, Doo-Yeol;Yoon, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.125-142
    • /
    • 2016
  • An overall review of the structural behaviors of ultra-high-performance fiber-reinforced concrete (UHPFRC) elements subjected to various loading conditions needs to be conducted to prevent duplicate research and to promote its practical applications. Thus, in this study, the behavior of various UHPFRC structures under different loading conditions, such as flexure, shear, torsion, and high-rate loads (impacts and blasts), were synthetically reviewed. In addition, the bond performance between UHPFRC and reinforcements, which is fundamental information for the structural performance of reinforced concrete structures, was investigated. The most widely used international recommendations for structural design with UHPFRC throughout the world (AFGC-SETRA and JSCE) were specifically introduced in terms of material models and flexural and shear design. Lastly, examples of practical applications of UHPFRC for both architectural and civil structures were examined.