• 제목/요약/키워드: High shear rate

검색결과 352건 처리시간 0.028초

PC/ABS 블렌드의 고속전단성형에 따른 모폴로지 변화에 관한 연구 (Study on the Morphology of the PC/ABS Blend by High Shear Rate Processing)

  • 이동욱;용다경;이한기;최석진;유재정;이형일;김선홍;이기윤;이승구
    • Korean Chemical Engineering Research
    • /
    • 제52권3호
    • /
    • pp.382-387
    • /
    • 2014
  • 본 연구에서는 PC/ABS 블렌드를 고속전단성형법을 사용하여 제조하였고 스크류 회전속도와 전단부하시간을 공정 변수로 하여 이에 따른 블렌드의 모폴로지 변화를 분석하였다. 블렌드의 모폴로지 및 ABS 분산상의 크기를 주사전자현미경으로 관찰하여 안정한 상 구조와 최적의 물성을 가지는 고속전단성형조건을 확립하였고, 전단응력에 의한 블렌드의 열화 현상을 알아보기 위해 기계적 물성의 변화를 측정하였다. 이 때, 스크류 회전속도는 500 rpm에서 3000 rpm까지 변화시켰으며 전단부하시간은 10초에서 40초까지 주었다. 고속전단성형법을 사용하여 제조한 PC/ABS 블렌드 및 고속전단성형을 가하지 않은PC/ABS 컴파운드의 분산상 크기를 명확하게 관찰하기 위하여 블렌드의 단면에 크롬산 수용액을 이용한 에칭공정을 시행하였고 공정 전후의 모폴로지를 비교 분석하였다. 에칭으로 생긴 블렌드 내의 ABS 홀을 이미지 측정 프로그램인 Image J를 이용하여 측정한 결과, 스크류 회전속도에 따라 그 크기가 감소하였으며 특히 1000 rpm 이상의 스크류 회전속도 하에서 제조된 PC/ABS 블렌드의 경우, 기계적 물성이 급격하게 감소하여 블렌드의 분해가 일어났음을 알 수 있었다. 결과적으로 PC/ABS 블렌드에 1000 rpm의 스크류 회전속도를 가한 경우, 나노미터 단위의 분산상을 가지며 가장 안정한 상구조를 관찰할 수 있었고 인장강도 및 신율도 상대적으로 높아서 PC/ABS 블렌드의 최적 고속전단성형조건이라 할 수 있다.

근모량에 따른 식생호안의 전단강도와 침식특성 분석 (Analyses of Shear Stress and Erosion Characteristic in a Vegetated Levee Revetment with Root Fiber Quantity)

  • 최흥식;이웅희
    • Ecology and Resilient Infrastructure
    • /
    • 제1권1호
    • /
    • pp.29-38
    • /
    • 2014
  • 본 연구는 식생호안의 안정성 평가에 중요한 인자인 식생 근모량에 따른 식생호안의 전단강도와 침식특성을 분석하였다. 식생호안의 평균근모량은 자체 제작한 채취기를 이용하여 측정하였다. 본 연구에서 사용된 식생은 식생호안에서 다소 우점종인 달뿌리풀이다. 흐름 특성별 실험결과 근모량이 증가함에 따라 토양의 전단강도가 증가함을 확인하였고, 아울러 근모량의 증가에 따라 침식율은 지수함수적으로 감소함을 확인하였다. 식생토양의 전단강도가 증가함에 따라 침식율이 지수함수적으로 감소되어 근모량에 기인한 전단강도의 증가는 침식 저항능력의 증가를 가져왔다. 아울러 근모량에 따른 전단강도와 침식율의 상관분을 실시하여 높은 상관계수를 가진 식을 제시하였다. 식생을 가진 호안의 수리적 안정성에는 근모량의 증가에 의한 전단강도와 유수의 특성인 Froude수에 지배적임을 확인하였다.

택코트 첨가 가열아스팔트 혼합물의 고주파 동적저항 특성 및 접착성능 평가에 대한 연구 (A Study for Evaluation of Hot Mixed Asphalt Mixtures with Tack-Coat Regarding High-Frequency Dynamic Resistance Performance and Bonding Property)

  • 김도완;문성호
    • 한국도로학회논문집
    • /
    • 제17권3호
    • /
    • pp.35-47
    • /
    • 2015
  • PURPOSES : A tack coat has been utilized to increase the bond performance between the surface layer and base course (intermediate course) at various road pavement sites. This is similarly true in other nations. Based on this connection, the objective of the present study is to evaluate the properties of hot mix asphalt (HMA) mixtures with an RSC-4 or BD-Coat and determine the application rate of the tack coat. METHODS : The HMA specimens were manufactured using superpave gyratory compaction. The HMA mixtures were composed of a 5-cm thick surface layer and a 10-cm thick base course. An impact hammer resonance test (IHRT) and a static load shear test were conducted to evaluate the performance of the HMA mixtures with a tack coat. From these tests, the dynamic moduli related to the high-frequency resistance and interlayer shear strength (ISS) of HMA could be obtained. RESULTS : The results of the dynamic moduli of HMA are discussed based on the resonance frequency (RF). To check the accuracy of the IHRT, we conducted a coherence analysis. A direct shear test using the application of a static load test was carried out to evaluate the interlayer shear strength (ISS) of HMA. CONCLUSIONS : The maximum ISS was demonstrated at an RSC-4 application rate of 462 gsm, and the maximum dynamic modulus was demonstrated at an RSC-4 application rate of 306 gsm. By averaging the results of the ISS, the maximum ISS values were obtained when a BD-Coat application rate of 602 gsm was applied.

Effect of Osmotic Stress on Human Red Cell Rheology: Cell Deformability, Aggregability and Blood Viscosity

  • Ku, Yun-Hee;Shin, Se-Hyun;Suh, Jang-Soo
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제4권2호
    • /
    • pp.7-12
    • /
    • 2006
  • The present study investigated the effects of the osmotic environment on the rheological properties of erythrocytes and their suspensions. In an iso-osmotic medium, erythrocytes forming a biconcave discocyte under resting conditions, exhibited high deformability. In a low-osmotic medium, the deformability of erythrocytes, which swelled and exhibited a spherical shape, significantly decreased at a high shear stress and the high-shear viscosity of the cell suspension was slightly higher than that of normal blood. Hyper-osmotic stress, however, which caused to form echinocytes, decreased cell deformability but exhibited smaller viscosity in low shear rates than iso-osmotic blood viscosity. These results showed a close relation with the aggregability measurements, in that hypertonic blood showed lower aggregability than the hypotonic and isotonic RBC suspensions. These findings indicate that the physicochemical environment has a strong influence on the rheological properties of the erythrocyte and its suspensions.

  • PDF

CMC의 물성이 도공액의 특성에 미치는 영향 (Effect of Properties of CMC on the Characteristics of Coating Color)

  • 박종열;김병수;정현채
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권4호
    • /
    • pp.82-86
    • /
    • 1996
  • This study was performed to elucidate the effect of degree of substitution and degree of polymerization of CMC on the rheological characteristics of coating color which is consisted of calcium carbonate as pigment. The results were as follows: 1. It appeared that DP of CMC rather DS has an effect on the low shear viscosity of coating color. 2. According as shear rate increased, the effect of DP and DS on high shear viscosity of coating color decreased. 3. According to increasing DS and DP, the water retention of coating color increased.

  • PDF

미세튜브 내부를 흐르는 혈액유동의 유변학적 특성에 대한 in-vitro 연구 (In-vitro Study on Hemorheological Behaviors of Blood Flow Through a Micro Tube)

  • 강명진;지호성
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권2호
    • /
    • pp.99-105
    • /
    • 2010
  • In order to obtain velocity profile of blood flow with high spatial resolution, a micro PIV technique consisted of a fluorescent microscope, double-pulsed YAG laser, cooled CCD camera was applied to in-vitro blood flow experiment through a micro round tube of a diameter $100{\mu}m$. Velocity distributions of blood flow for rabbit were obtained. The viscosity profiles for shear rate were found at flowing condition. To provide hemorheological characteristics of blood flow, the viscosities for shear rate were evaluated. The viscosity of blood also steeply increase by decreasing shear rate resulting in Non-Newtonian flow, especially in low shear rate region caused by RBC rheological properties. The results show typical characteristics of Non-Newtonian characteristics from the results of velocity profile and viscosity for blood flow. From the inflection points, cell free layer and two-phase flow consisted with plasma and suspensions including RBCs can be separated.

Effect of Oxygen and Shear Stress on Molecular Weight of Hyaluronic Acid Produced by Streptococcus zooepidemicus

  • Duan, Xu-Jie;Yang, Li;Zhang, Xu;Tan, Wen-Song
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.718-724
    • /
    • 2008
  • Dissolved oxygen (DO) and shear stress have pronounced effects on hyaluronic acid (HA) production, yet various views persist about their effects on the molecular weight of HA. Accordingly, this study investigated the effects of DO and shear stress during HA fermentation. The results showed that both cell growth and HA synthesis were suppressed under anaerobic conditions, and the HA molecular mass was only $(1.22{\pm}0.02){\times}10^6 Da$. Under aerobic conditions, although the DO level produced no change in the biomass or HA yield, a high DO level favored the HA molecular mass, which reached a maximum value of $(2.19{\pm}0.05){\times}10^6 Da$ at 50% DO. Furthermore, a high shear stress delayed the rate of HA synthesis and decreased the HA molecular weight, yet had no clear effect on the HA yield. Therefore, a high DO concentration and mild shear environment would appear to be essential to enhance the HA molecular weight.

The Effect of Sample Handling on the Rheological Measurement of Regenerated Silk Fibroin Formic Acid Solution using Parallel Plate Geometry

  • Cho, Hee-Jung;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제22권1호
    • /
    • pp.5-10
    • /
    • 2011
  • The effect of sample handling condition on the rheological measurement of regenerated silk fibroin formic acid solution using parallel plate geometry was investigated. In case of loading method, the loading by pouring sample solution resulted in the best reproducibility of rheological measurement. Loading with spoon showed a high variance of viscosity value at low shear rate region ($0.01{\sim}1sec^{-1}$) while loading with syringe exhibited a low reproducibility of viscosity at high shear region ($1{\sim}100sec^{-1}$) with a disappearance of shear thinning phenomenon. It was revealed that the sample loading with small extra amount lead to the most reproducible result. The sample loading with the exact amount for the measuring plate resulted in a lack of reproducibility of high shear viscosity, while the loading with large extra volume produced a limited consistency of low shear viscosity. It was turned out that 3 min. of waiting time before measurement was the optimum condition for reliable result. When the waiting time was less than 1 min., the low shear viscosity was obtained with a lack of consistency. On the other hand, the sample solution started drying when the waiting time increased up to 5 min.

Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer

  • Chen, Shao J.;Yin, Da W.;Jiang, N.;Wang, F.;Guo, Wei J.
    • Geomechanics and Engineering
    • /
    • 제17권4호
    • /
    • pp.333-342
    • /
    • 2019
  • Geological dynamic hazards during coal mining can be caused by the failure of a composite system consisting of roof rock and coal layers, subject to different loading rates due to different advancing velocities in the working face. In this paper, the uniaxial compression test simulations on the composite rock-coal layers were performed using $PFC^{2D}$ software and especially the effects of loading rate on the stress-strain behavior, strength characteristics and crack nucleation, propagation and coalescence in a composite layer were analyzed. In addition, considering the composite layer, the mechanisms for the advanced bore decompression in coal to prevent the geological dynamic hazards at a rapid advancing velocity of working face were explored. The uniaxial compressive strength and peak strain are found to increase with the increase of loading rate. After post-peak point, the stress-strain curve shows a steep stepped drop at a low loading rate, while the stress-strain curve exhibits a slowly progressive decrease at a high loading rate. The cracking mainly occurs within coal, and no apparent cracking is observed for rock. While at a high loading rate, the rock near the bedding plane is damaged by rapid crack propagation in coal. The cracking pattern is not a single shear zone, but exhibits as two simultaneously propagating shear zones in a "X" shape. Following this, the coal breaks into many pieces and the fragment size and number increase with loading rate. Whereas a low loading rate promotes the development of tensile crack, the failure pattern shows a V-shaped hybrid shear and tensile failure. The shear failure becomes dominant with an increasing loading rate. Meanwhile, with the increase of loading rate, the width of the main shear failure zone increases. Moreover, the advanced bore decompression changes the physical property and energy accumulation conditions of the composite layer, which increases the strain energy dissipation, and the occurrence possibility of geological dynamic hazards is reduced at a rapid advancing velocity of working face.

Numerical study of the effect of periodic jet excitation on cylinder aerodynamic instability

  • Hiejima, S.;Nomura, T.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.141-150
    • /
    • 2002
  • Numerical simulations based on the ALE finite element method are carried out to examine the aerodynamics of an oscillating circular cylinder when the separated shear flows around the cylinder are stimulated by periodic jet excitation with a shear layer instability frequency. The excitation is applied to the flows from two points on the cylinder surface. The numerical results showed that the excitation with a shear layer instability frequency can reduce the negative damping and thereby stabilize the aerodynamics of the oscillating cylinder. The change of the lift phase seems important in stabilizing the cylinder aerodynamics. The change of lift phase is caused by the merger of the vortices induced by the periodic excitation with a shear layer instability frequency, and the vortex merging comes from the high growth rate, the rapid increase of wave number and decrease of phase velocity for the periodic excitation in the separated shear flows.