• Title/Summary/Keyword: High separation efficiency

Search Result 406, Processing Time 0.034 seconds

Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes (다공성 스테인리스 강 지지체의 표면개질에 따른 팔라듐-은 합금 수소 분리막의 수소 투과 선택도의 변화)

  • Kim, Nak-Cheon;Kim, Se-Hong;Lee, Jin-Beum;Kim, Hyun-Hee;Yang, Ji-Hye;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.286-300
    • /
    • 2016
  • Pd-Ag alloy membranes have attracted a great deal of attention for their use in hydrogen purification and separation due to their high theoretical permeability, infinite selectivity and chemical compatibility with hydro-carbon containing gas streams. For commercial application, Pd-based membranes for hydrogen purification and separation need not only a high perm-selectivity but also a stable long-term durability. However, it has been difficult to fabricate thin, dense Pd-Ag alloy membranes on a porous stainless steel metal support with surface pores free and a stable diffusion barrier for preventing metallic diffusion from the porous stainless steel support. In this study, thin Pd-Ag alloy membranes were prepared by advanced Pd/Ag/Pd/Ag/Pd multi-layer sputter deposition on the modified porous stainless steel support using rough polishing/$ZrO_2$ powder filling and micro-polishing surface treatment, and following Ag up-filling heat treatment. Because the modified Pd-Ag alloy membranes using rough polishing/$ZrO_2$ powder filling method demonstrate high hydrogen permeability as well as diffusion barrier efficiency, it leads to the performance improvement in hydrogen perm-selectivity. Our membranes, therefore, are expected to be applicable to industrial fields for hydrogen purification and separation owing to enhanced functionality, durability and metal support/Pd alloy film integration.

Effect of the Particle Size and Unburned Carbon Content on the Separation Efficiency of Fly ash in the Countercurrent Column Flotation (向流컬럼浮選機에서 石炭灰의 크기 및 未燃炭素 含量이 分離特性에 미치는 영향)

  • 이정은;이재근
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.36-44
    • /
    • 2000
  • Fly ash was composed of the unburned carbon and mineral particles. The former was able to attach on the bubbles, while the latter was not. Therefore, it was possible to separate the unburned carbon and the mineral from fly ash using the froth flotation process. This study was carried out to evaluate the separation efficiency as a function of the ny ash particle properties in the column flotation. Separation efficiency was analyzed for various size fraction of -38 fm,38~125 fm and 1125 W, and for various fly ash samples containing 7, 11, and 20 wt% unburned carbon. For the size fractions of -38 fm containing 7 wt% unburned carbon, separation efficiency was 86ft, whereas separation efficiency was found to be 74% for the size fraction of +125$\mu\textrm{m}$ containing 20 wt% unburned carbon. The results indicated that separation efficiency increased with the decrease in the particle size and the unburned carbon content of the fly ash.

  • PDF

자발적 상분리법과 수열합성법을 이용한 ZnO계 일차원 나노구조의 수직 합성법 연구

  • Jo, Hyeong-Gyun;Kim, Dong-Chan;Bae, Yeong-Suk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.5.2-5.2
    • /
    • 2009
  • From 10 years ago, the development of nano-devices endeavored to achieve reconstruction of information technology (IT) and nano technology (NT) industry. Among the many materials for the IT and NT industry, zinc oxide (ZnO) is a very promising candidate material for the research of nano-device development. Nano-structures of ZnO-based materials were grown easily via various methods and it attracts huge attention because of their superior electrical and optical properties for optoelectronic devices. Recently, among the various growth methods, MOCVD has attracted considerable attention because it is suitable process with benefits such as large area growth, vertical alignment, and accurate doping for nano-device fabrication. However, ZnO based nanowires grown by MOCVD process were had the principal problems of 1st interfacial layers between substrate and nanowire, 2nd a broad diameter (about 100 nm), and 3rd high density, and 4th critical evaporation temperature of Zinc precursors. In particular, the growth of high performance nanowire for high efficiency nano-devices must be formed at high temperature growth, but zinc precursors were evaporated at high temperature.These problems should be repaired for materialization of ultra high performance quantum devices with quantum effect. For this reason, we firstly proposed the growth method of vertical aligned slim MgZnO nanowires (< 10 nm) without interfacial layers using self-phase separation by introduced Mg at critical evaporation temperature of Zinc precursors ($500^{\circ}C$). Here, the self-phase separation was reported that MgO-rich and the ZnO-rich phases were spontaneously formed by additionally introduced Mg precursors. In the growth of nanowires, the nanowires were only grown on the wurzite single crystal seeds as ZnO-rich phases with relatively low Mg composition (~36 at %). In this study, we investigated the microstructural behaviors of self-phase separation with increasing the Mg fluxes in the growth of MZO NWs, in order to secure drastic control engineering of density,diameter, and shape of nanowires.

  • PDF

Design of a Low-Pressure Hydrocyclone with Application for Fine Settleable Solid Removal Using Substitute Polystyrene Particles

  • Lee, Jin-Hwan;Jo, Jae-Yoon
    • Journal of Aquaculture
    • /
    • v.18 no.3
    • /
    • pp.189-195
    • /
    • 2005
  • By testing the separation performance for a fine settleable solid removal system in an aquaculture system using polystyrene particles as an experimental substitute, the optimal geometric dimensions for a Low-Pressure Hydrocyclone (LPH) were obtained. The design approach far the LPH took into consideration two inflow diameters (Di: 30, 50 mm), three overflow diameters (Do: 60, 70, 100 mm) and four cylinder lengths (Lc: 250, 345, 442, 575 mm), while the cylinder diameter (Dc) at 335 mm, the underflow diameter (Du) at 50 mm and the cone angle (${\theta}$) at $68^{\circ}$ were kept constant. The separation performances of 19 different dimension combinations of LPH were tested, ranging from 300 to 1200 ml/sec of inflow rate using substitute polystyrene particles (0.4-0.7 mm dia., ${\rho}_s=1.05g/cm^3$). These polystyrene particles exhibit a similar density and settling velocity to the fine fecal debris of the common carp. The total separation efficiency for the inflow rate ranged from a high of 97% to a low of 20%. Experimental results obtained by ANCOVA and the Tukey test (${\alpha}=0.05$) showed that the separation performances of the LPH were significantly affected (P<0.05) by the fi, Di, Do and Lc. The maximum separation performance was detected at a dimension combination of 30 mm of inflow diameter (Di), 60 mm of overflow diameter (Do), 442 and 575 mm of cylinder length (Lc). The dimension proportions were 0.09, 1.32-1.72, 0.18 and 0.15 for Di/Dc, Lc/Dc, Do/Dc and Du/Dc respectively.

A Study on the Optimal Process Design of Cryogenic Air Separation Unit for Oxy-Fuel Combustion (순산소 연소를 위한 초저온 공기분리장치의 최적공정 설계 연구)

  • Choi, Hyeung-Chul;Moon, Hung-Man;Cho, Jung-ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.647-654
    • /
    • 2018
  • In order to solve the global warming and reduce greenhouse gas emissions, it has been developed the $CO_2$ capture technology by oxy-fuel combustion. But there is a problem that the economic efficiency is low because the oxygen production cost is high. ASU (Air Separation Unit) is known to be most suitable method for producing large capacity of oxygen (>2,000 tpd). But most of them are optimized for high purity (>99.5%) oxygen production. If the ASU process is optimized for low purity(90~97%) oxygen producing, it is possible to reduce the production cost of oxygen by improving the process efficiency. In this study, the process analysis and comparative evaluation was conducted for developing large capacity ASU for oxy-fuel combustion. The process efficiency was evaluated by calculating the recovery rate and power consumption according to the oxygen purity using the AspenHysys. As a result, it confirmed that the optimal purity of oxygen for oxyfuel combustion is 95%, and the power consumption can be reduced by process optimization to 12~18%.

Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module (중공사형 기체분리막 모듈을 이용한 바이오가스의 분리 및 정제)

  • Koh, Hyung-Chul;Ha, Seong-Yong;Woo, Seung-Moon;Nam, Sang-Yong;Lee, Byung-Seong;Lee, Chung-Seop;Choi, Whee-Moon
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • Hollow fiber membrane using CTA polymers were prepared by the phase separation method for the separation and purification of biogas and the hollow fiber gas separation membrane modules with the effective surface area of 0.17 $m^2$ were prepared. The pure gas permeation properties of membrane modules for methane, oxygen and carbon dioxide were measured. The permeance of $CO_2$ and $CH_4$were 0.46 GPU and 18.52 GPU, respectively, therefore, the high $CO_2$/$CH_4$ selectivity of 40.4 was obtained. The separation and purification test for 4 different simulated mixed gases were carried out after the pure gas test and the gas concentration and flux of the permeate at the various stage-cut were measured from the 1 stage, 2 stage, and 3 stage cascade of membrane modules. In the 1 stage test, the concentration of $CH_4$ increased as the increase of the stage-cut, while the $CH_4$ recovery efficiency ratio decreased. In the 2 stage test, the $CH_4$ recovery efficiency ratio increased compared to the 1 stage. The 3 stage test was employed to reduce the loss of $CH_4$ in biogas and the result showed less than 5% of $CH_4$ recovery loss.

Solid-liquid Separation Characteristics of Membrane Filter Press according to Coagulant Properties of Anaerobic Digestion Waste Water (혐기소화폐액의 응집제 특성에 따른 멤브레인 필터프레스의 고액분리 특성)

  • Han, Seong Kuk;Jung, Hee Suk;Song, Hyoung Woon;Kim, Ho;Ahn, Dae Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.23-32
    • /
    • 2014
  • Recently, it is increase in the processing of organic waste using anaerobic digestion. Therefore, the studies on the processing method for increasing the anaerobic digestion waste water. But it is very difficult to solid-liquid separation, because the characteristics of anaerobic digestion waste water. So this study evaluate solid-liquid separation efficiency of anaerobic digestion sludge using CST(Capillary Suction Time), TTF(Time to Filter). To address this problem, a membrane filter press of the lab scale was produced and the anaerobic digestion wastewater was applied to it. Polymer coagulants were found to be most suitable 7192PLUS and 1T60, It is necessary to minimum injection concentration is 7192PLUS (200 mg/L), 1T60 (100 mg/L). To evaluate dehydration efficiency, it was measured the moisture content of the dehydrated cake and suspended solids of decanted water. As a result, showed that a high removal efficiency of 97.4% when the solid-liquid separation using the membrane filter press. And the moisture content of the dehydrated cake was less than 65%.

Study on Recycling of Refractory Materials from High-Temperature Melting Furnace by Color Sorting Technology (색상선별(色相選別) 기술(技術)을 이용(利用)한 고온(高溫) 용융노(熔融爐) 이화재(而火材) 재활용(再活用)에 관(關)한 연구(硏究))

  • Seo, Kang-Il;Lee, Deok-Hee;Choi, Woo-Zin;Jang, Jung-Hoon;Park, Eun-Kyu;Oh, Young-Gil
    • Resources Recycling
    • /
    • v.20 no.1
    • /
    • pp.28-36
    • /
    • 2011
  • More than 50% of refractory materials generated from high-temperature melting furnace was not carbonized and could be recycled by adopting proper separation process. In the present work, the separation of refractory materials has studied by adopting color sorting technology to promote the recycling of waste refractory. Purity of the refractory materials was obtained with at 97.2%, color temperature of sorter light source 6,500K, which gives less interference of surrounding light source. Purity and separation efficiency were improved as size is setting bigger and lower conveyer belt speed. It is revealed that optimum conditions were color temperature 6,500K, conveyer belt speed 1,000 mm/sec, particle size -20 mm, etc. To improve purity and separation efficiency on below 10mm size, the resolution of should be fixed camera and it narrow recognition range. As a result of the study, color sorting technology could be used for separation of waste refractory materials and will contribute to promote the waste recycling.

Conditions of Hemoglobin Hydrolysis and Separation for the Production of Enriched Heme-iron (고농도 Heme-iron의 생산을 위한 Hemoglobin의 가수분해 및 분리 조건)

  • Kang, In-Kyu;In, Man-Jin;Oh, Nam-Soon
    • Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.219-223
    • /
    • 2001
  • Effects of hemoglobin (Hgb) concentration and degree of hydrolysis (DH) of Hgb on the separation of heme-iron were examined to produce highly enriched heme-iron from Hgb hydrolysate. Separation efficiency of Hgb hydrolysate with different DH was studied at wide pH range (pH $1.0{\sim}11.0$). Separation efficiency expressed as heme-iron/peptide ratio increased with decreasing Hgb concentration. When 5% Hgb (pH 10.0) was hydrolyzed using commercially available Esperase for 5 h at $50^{\circ}C$, DH was 25%. The precipitation of heme-iron-enriched peptides were remarkably high at pH range $3{\sim}6$. Optimal pH range for heme-iron with high heme-iron/peptide ratio shifted to acidic pH with increasing DHs of Hgb. The enriched heme-iron fraction in the precipitates showed a single band through urea-SDS-PAGE, with a molecular mass of 1 kDa. In the dry heme-iron product produced in a pilot bioreactor, content of heme-iron and heme-iron/peptide ratio were 27.1 and 38.7%, respectively, and production yield was 9.3%.

  • PDF

A study on engine performances and exhaust emissions using gasoline-methanol as an alternative fuel (대체연료로서 가솔린-메타놀 혼합연료에 의한 가솔린 기관성능과 배출오염물에 관한 연구)

  • 김희철;용기중
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.18-26
    • /
    • 1981
  • The purpose of this paper is to study the possibility of practical use of gasoline-methanol mixed fuel as an alternative fuel of gasoline engines in the light of engine performances and harmful exhaust emissions as well as mixings and separations of the mixed fuels. When the methanol of 99.8% purity is mixed with super or regular gasoline available on the market today, the experimental results obtained without modifying carburetor in this study are as follows; 1.The separation ratio depends upon the gasoline-methanol mixing ratio only, regardless of fuel temperature and fuel additives for preventing separation of phase. 2.The critical absorption ratio is affected by the gasoline-methanol mixing ratio, its temperature and the quantity of fuel additives. 3.Concerning the distillation temperature, the initial point of all sorts of fuels is almost same,but 10% point and 35-60% point of mixed fuels are lower than those of gasoline only. 4.In case of throttle valve opening set, engine output using the mixed fuels is decreased compared to gasoline, but thermal efficiency is increased as a consequence of decreasing specific energy consumption. 5.In case of fixed load test, thermal efficiency is increased at low engine speed even under low part-load as well as under comparatively high part-load including full load. 6.CO and NOx emissions are reduced remarkably with the mixed fuels.

  • PDF