• 제목/요약/키워드: High rotational Speed

검색결과 448건 처리시간 0.024초

회전 아크 장치를 이용한 GMAW 용접 신호 분석 (Signal Analysis of Rotational Arc Device in GMAW)

  • 김지태;;나석주
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.326-328
    • /
    • 2005
  • High speed rotational arc sensing is an important method to detect the torch deviation during automatic seam tracking of arc welding. In this paper, a mathematic model of high speed rotational arc sensing is analyzed. The simulation results are consistent with the experimental results. The current waveforms at the beginning of the welding are different from those at middle of the welding because of the formation of the weld bead profile. The signal patterns for seam tracking and end-point detection are proposed. A phase shift between the rotation and the current variation is also discovered in the experiments.

  • PDF

An Efficient On-line Identification Approach to Rotor Resistance of Induction Motors Without Rotational Transducers

  • Lee, Sang-Hoon;Yoo, Ho-Sun;Ha, In-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권1호
    • /
    • pp.86-93
    • /
    • 1998
  • In this paper, we propose an effective on-line identification method for rotor resistance, which is useful in making speed control of induction motors without rotational transducers robust with respect to the variation in rotor resistance. Our identification method for rotor resistance is based on the linearly perturbed equations of the closed-loop system for sensorless speed control about th operating point. Our identification method for rotor resistance uses only the information of stator currents and voltages. In can provide fairly good identification accuracy regardless of load conditions. Some experimental results are presented to demonstrate the practical use of our identification method. For our experimental work, we have built a sensorless control system, in which all algorithms are implemented on a DSP. Our experimental results confirm that our on-line identification method allows for high precision speed control of commercially available induction motors without rotational transducers.

  • PDF

축-베어링 계의 불균형 응답에 대한 능동 제어 베어링의 효과 (Effect of Active Control Bearing on Unbalance Response of a Rotor-Bearing System)

  • 노병후;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.316-321
    • /
    • 2001
  • The paper presents the unbalance response of a rotor-bearing system supported by an active control bearing. The proportional, derivative and integral controls are employed for the control algorithm of an active control bearing to suppress the unbalance response of a rotor-bearing system. Results of analytical investigations on the unbalance responses of a rotor supported by an active control bearing are presented for various control gains. It is found that the unbalance response of a rotor can be greatly suppressed by the proportional, derivative or integral control of the bearing. The proportional control is more effective than the derivative control at low rotational speed, and the derivative control is more effective than the proportional control at high rotational speed. In the case of the integral control of the bearing , the unbalance response of a rotor is increased as a general rule. However, the integral control of the bearing is extremely superior to proportional or derivative control at very low rotational speed.

  • PDF

축-베어링 계의 불균형 응답에 대한 능동 제어 베어링의 효과 (Effect of Active Control Bearing on Unbalance Response of a Rotor-Bearing System)

  • 노병후;김경웅
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.99-104
    • /
    • 2002
  • The paper presents the unbalance response of a rotor-bearing system supported by an active control bearing. The proportional, derivative and integral controls are investigated fur the control algorithm of an active control bearing to suppress the unbalance response of a rotor-bearing system. Results of analytical investigations on the unbalance responses of a rotor supported by an active control bearing are presented for various control gains. It is found that the unbalance response of a rotor can be greatly suppressed by the proportional, derivative or integral control of the bearing. The proportional control is more effective than the derivative control at low rotational speed, and the derivative control is more effective than the proportional control at high rotational speed. In the case of the integral control of the bearing, the unbalance response ova rotor is increased as a general rule. However, the integral control of the bearing is extremely superior to proportional or derivative control at very low rotational speed.

전동차용 견인전동기의 열유동 특성에 관한 전산해석 (Numerical Analysis on Heat Transfer and Fluid Flow Characteristics of Traction Motor for Electric Car)

  • 남성원;김영남;채준희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.137-143
    • /
    • 1998
  • Numerical simulation is conducted to clarify the heat transfer and fluid flow characteristics of traction motor for electric car SIMPLE algorithm based on finite volume method is used to make linear algebra equation. The governing equations are solved by TDMA(TriDiagonal Matrix Algorithm) with line-by-line method and block correction. From the results of simulation, the characteristics of cooling pattern is strongly affected by the size of hole in stator core. In the case of high rotational speed of rotor, temperature difference along the axial direction is more decreased than that of low rotational speed.

  • PDF

Oil-Jet 윤활시 가스터어빈용 고속 Ball Bearing 윤활특성 (Lubrication Characteristics of High-Speed Ball Bearing with Oil-Jet Lubrication)

  • 김기태
    • Tribology and Lubricants
    • /
    • 제12권4호
    • /
    • pp.28-34
    • /
    • 1996
  • The lubrication characteristics of high-speed ball bearings have been investigated empirically using 45mm bore split inner ring ball bearings employed in small industrial gas turbine engines with oil-jet lubrication method. For the close structural simulation, experiments carried out with bearing mounting supports of real engines, such as bearing housings and oil nozzle assemblies with squeeze film dampers. Thus the results of tests can be directly applied to the design and the development of gas turbine engines. Testing was done by varying operating speeds, axial load on bearings, and lubricant flow rates. During testing, the temperature of bearing at outer-ring face, the power consumption of the driving motor, and the rotating resistance of the bearing were measured. From this study, the representative factors for lubrication characteristics at high speed was found, and the most important one was not operating speed but axial load up to 1.95 million dmN speed and 2969 N axial load. Furthermore, the detailed variation of the rotational resistance of the bearing could be visualized by measuring the change of the radial load under the bearing supports. The rotational resistance consists of the frictional resistance and the bearing-cavity oil resistance.

초고속 회전체용 공기 포일 베어링의 동특성 계수 측정을 위한 전자석 가진장치에 관한 연구 (Study on the Electromagnetic Excitation System for the Measurement of Dynamic Coefficients of Air Foil Bearing for High Speed Rotor)

  • 박철훈;최상규;함상용
    • 한국유체기계학회 논문집
    • /
    • 제16권3호
    • /
    • pp.18-25
    • /
    • 2013
  • Recently the requirement of long-term mobile energy source for mobile robot or small-sized unmanned vehicle is highly increased, and the micro turbine generator(MTG) which is known to have high energy and power density is under development. MTG is designed to have air foil bearing and high speed rotor of which operating speed is 400,000rpm. In the development stage of high speed rotor and bearing, stability analysis for the full operational speed range is essential and the dynamic coefficients such as stiffness and damping coefficients of bearing depending on the rotational speed are required for that. Although perturbation method is usually used to identify the dynamic coefficients, it's not easy to give the perturbation to the high speed rotating rotor. In this study, we present the dynamic coefficients measurement system for air foil bearing which consists of electromagnets, gap sensors, high speed motor and controller. This measurement system can exert the sine sweep force to the rotor-bearing, measure the displacement of rotor and get FRF(Frequency response function) of rotor-bearing. The least square estimation method is applied to identify the dynamic coefficients of bearing from the measured frequency response at the different rpm and the identified dynamic coefficients for the wide rotational speed range are presented.

가스 포일 베어링으로 지지된 고속 회전체의 경사각과 베어링의 기계적 예압이 고유 진동수와 불안정성 발생 속도에 미치는 영향 (Effects of the Slopes of the Rotational Axis and Bearing Preloads on the Natural Frequencies and Onset Speed of the Instability of a Rotor Supported on Gas Foil Bearings)

  • 박문성;이종성;김태호
    • Tribology and Lubricants
    • /
    • 제30권3호
    • /
    • pp.131-138
    • /
    • 2014
  • This study investigates the effects of the slopes of the rotational axis and bearing preloads on the natural frequencies and onset speeds of the instability of a rotor supported on gas foil bearings (GFBs). The predictive model for the rotating system consists of a rigid rotor supported on two gas foil journal bearings (GFJBs) and a pair of gas foil thrust bearings (GFTBs). Each GFJB supports approximately half the rotor weight. As the slope of the rotational axis increases from $0^{\circ}$(horizontal rotor operation) to $90^{\circ}$(vertical rotor operation), the applied load on the GFJB owing to the rotor weight decreases. The predictions show that the natural frequency and onset speed of instability decrease significantly with an increase in the slope of the rotational axis. In a parametric study, the nominal radial clearance and preload for the GFJB were changed. In general, a decrease in the nominal radial clearance lead to an increase in the natural frequency and onset speed of instability. For constant assembly clearance, the decrease in the preload changed the natural frequency and onset speed of instability with insignificant improvements in the rotordynamic stability. The present predictions can be used as design guidelines for GFBs for oil-free high-speed rotating machinery with improved rotordynamic performance.

축구화 스터드의 형태변화에 따른 회전마찰력 (Rotational Friction of Different Soccer Stud)

  • 이중숙;박상균
    • 한국운동역학회지
    • /
    • 제14권2호
    • /
    • pp.121-138
    • /
    • 2004
  • The design of soccer studs is important for providing friction on a variety of surfaces. We hypothesized that a certain type of soccer studs could improve performance due to high rotational friction. Thus, this study was conducted to determine the relationship between the frictional characteristics and different soccer stud design. Twelve recreational soccer players were recruited. Rotational friction data from the force plate was collected for all subjects during normal walking with 180 degree rotation. Walking speed was controlled at 1.2m/s (${\pm}\;0.1\;m/s$) with timing lights on infilled artificial turf. Three different types of soccer studs and one running shoe were tested. Repeated measures ANOVA was used to determine significance. Significant differences were found in rotational friction with four different shoes. Trx and World studs tended to have greater maximum rotational friction than the running shoe (Nova) and traditional soccer shoe(Copa Mondial). The results were as follow : world(25.95Nm) > trx(25.74Nm) > copa(22.50Nm) > nova(16.36Nm). The difference may be due to the number, location, size, and shape of studs. We concluded that stud design influences rotational friction between the shoe and surface during movement. Based on studs design and contact area, Trx with blade type studs are recommended since it showed high rotational friction for performance as well as enough contact area for stability. However, differences due to the mechanical properties of soccer studs are still being investigated.

정밀 공작기계의 회전 영역별 진동 및 불평형량 감소에 따른 가공 정밀도 영향에 관한 연구 (A Study on the Machining Accuracy according to Vibration and Unbalance Decrease in Rotational Speed Domains of High Precision Machine Tools)

  • 손덕수;김상화;박일환
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.121-126
    • /
    • 2013
  • Precision machine tools for high dignity cutting are needed for efforts to improve machining accuracy. However, there are many factors to improve machining accuracy. This study investigated how machining accuracy changes when variation and unbalance amount in rotational speed domain is decreased. Machining accuracy of initial machine tools depends on manufacturing and assembly of parts such as bearing. And then, vibration and noise vary with volume of unbalance amount when it is rotation, so it effects unbalance amount. Also vibration and noise increased by unbalance shorten spindle's life and it especially makes worse boring accuracy. Therefore, this study studied the change of roundness and cylindricity of workpiece when it decreases variation and unbalance in rotational speed domain.