• Title/Summary/Keyword: High reynolds number

Search Result 473, Processing Time 0.035 seconds

Study on Pressure drop characteristics in HTS cable core with two flow passages

  • Lee, Jun-Kyoung;Kim, Seok-Ho;Kim, Hae-Joon;Cho, Jeon-Wook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.4
    • /
    • pp.33-37
    • /
    • 2008
  • The main objective of this study is to identify the pressure drop characteristics of coolant flow passages of 154kV/1GVA High Temperature Superconducting (HTS) power cable, experimentally. The passages were consisted of two parts, the one is the circular path with spiral ribs in the core to cool the cable conductor layer and the other is annular path with spirally corrugated outer wall to cool the shield layer. Thus the experiments to acquire the pressure drop data were performed with two types of circular spiral tubes and eight types of the concentric annuli in various range of Reynolds number. The pressure drops in the core tubes and the annuli were much higher than those in the tubes with smooth surface. Therefore, modified correlations to present the experimental results in each flow passage were suggested.

A Study on the Flow Field Analysis with a High-frequency Ultrasonic by PIV Measurement (PIV 계측에 의한 고주파수 초음파 유동장 해석에 관한 연구)

  • Lee, Sang-Bum;Song, Min-Geun;Son, Seung-Woo;Jeong, Gwang-Su;Ju, Eun-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.727-732
    • /
    • 2001
  • The purpose of this study is to compare the time mean velocity distribution, the time mean kinetic energy, and the time mean turbulence intensity between vertical and horizontal flow fields in a coaxial circular pipe by PIV measurement. Experiments are performed at a Reynolds number 2,000, measuring regions divided as the section regions A, B, C, D in flow fields. The angle of the high-frequency ultrasonic is selected in the direction of $45^{\circ}$ to the flow axes and it is reflected several times. In results, it is clarified that the effect of gravity is given in the vertical flow field compared with the horizontal flow field and the ultrasonic affects the turbulence enhancement. And kinetic energy and turbulence intensity with ultrasonic are shown slightly bigger than those in flow field without it.

  • PDF

Large-eddy simulation of channel flow using a spectral domain-decomposition grid-embedding technique (스펙트럴 영역분할 격자 삽입법을 이용한 채널유동의 큰 에디 모사)

  • Gang, Sang-Mo;Byeon, Do-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.1030-1040
    • /
    • 1998
  • One of the main unresolved issues in large-eddy simulation(LES) of wall-bounded turbulent flows is the requirement of high spatial resolution in the near-wall region, especially in the spanwise direction. Such high resolution required in the near-wall region is generally used throughout the computational domain, making simulations of high Reynolds number, complex-geometry flows prohibitive. A grid-embedding strategy using a nonconforming spectral domain-decomposition method is proposed to address this limitation. This method provides an efficient way of clustering grid points in the near-wall region with spectral accuracy. LES of transitional and turbulent channel flow has been performed to evaluate the proposed grid-embedding technique. The computational domain is divided into three subdomains to resolve the near-wall regions in the spanwise direction. Spectral patching collocation methods are used for the grid-embedding and appropriate conditions are suggested for the interface matching. Results of LES using the grid-embedding strategy are promising compared to LES of global spectral method and direct numerical simulation. Overall, the results show that the spectral domain-decomposition grid-embedding technique provides an efficient method for resolving the near-wall region in LES of complex flows of engineering interest, allowing significant savings in the computational CPU and memory.

Effect of the Pressure and the Flow Pattern in a Sac Chamber of a Diesel Injection Nozzle on the Issued Spray Behaviors (디젤 연료분사노즐 색크실내의 압력과 유동패턴이 분류의 분열거동에 미치는 영향)

  • 김장헌;송규근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.48-53
    • /
    • 2000
  • The effects of the internal flow in a diesel injection nozzle on the atomization of the spray has been investigated experimentally. Flow visualization was made using a transparent acrylic model nozzle. And also, measurement of the sac chamber pressure was made for clartfying the effect of pressure fluctuation in the sac chamber on the wpray behaviors. The geometry of the model nozzle was scaled up 10 times of the actual nozzle and the injection pressure for the model nozzle was adjusted so as to achieve a Reynolds number at the discharge hole which was the same as the actual nozzle. Polystyrene tracers, a laser sheet light and a still/high speed video camera were used to visualize the flow pattern in the sac chamber. When the needle lift was small, the high turbulence in the sac chamber generated by the high velocity seat flow made the spread angle of the spray large. Cavitation which arose in the sky chamber induced the pressure fluctuation and then affects the spread angle of the spray.

  • PDF

Three-Dimensional Numerical Study on the Aerodynamic Characteristics around Corner Vane in Heavy-Duty Truck (대형 트럭 코너베인 주위의 공력특성에 관한 3차원 수치해석)

  • 김민호;정우인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.181-189
    • /
    • 2000
  • The aerodynamic characteristics of large transport vehicle has become more and more important in recent vehicle design to improve driving performance in high speed cruising and raise the product valve with regard to a comfortable driving condition. Hence, detailed knowledge of the flow field around truck coner vane is essential to improve fuel efficiency and reduce the dirt contamination on vehicle body surface. In this study, three-dimensional flow characteristics around corner vane attached to truck cabin were computed for the steady, incompressible, and high speed viscous flow, adopting the RNG k-$\varepsilon$ turbulence model. In order to investigate the influence of configuration and structure of corner vane, computations were carried out for four cases at a high Reynolds number, Re=4.1$\times$106 (based on the cabin height). The global flow patterns, drag coefficient and the distributions such as velocity magnitude, turbulent kinetic energy around the corner vane, were examined. As a result of this study, we could identify the flow characteristics around corner vane for the variation of corner vane length and width. Also, suggest the improved structure to reduce the dirt contamination in cabin side.

  • PDF

Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section (고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석)

  • Lee Kang-Yeop;Kim Hyung-Mo;Han Yeoung-Min;Lee Soo-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.71-78
    • /
    • 2002
  • All modem, aerospace gas turbines must operate with hot stage gas temperature several hundreds of degrees hotter than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and In the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are divided by Impinging cooling method and Vortex cooling method. Specially, Research of new cooling system(Vortex cooling method) that overcome inefficiency of film cooling and limitation of space. The focus of new cooling system that improve greatly cooling efficiency using quantity's cooling air which is less is set in surface heat transfer elevation. Therefore, In this study, the numerical analysis have been performed for characteristic of flow and thermal in the swirl chamber and compared with the flow field measurement by LDV. especially, for understanding of high heat transfer efficiency in vicinity of wall. we considered flow structure and mechanism of vortex and heat transfer characteristic in variation of Reynolds number.

  • PDF

The Effects of Impingement Hole Size on Heat Transfer of An Impingement/Effusion Cooling System (충돌제트/유출냉각기법에서 분사판의 홀배열이 열전달에 미치는 영향)

  • Choi, Jong-Hyun;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.489-496
    • /
    • 2001
  • Two perforated plates are used to investigate local heat/mass transfer characteristics in an impingement/effusion cooling system. A naphthalene sublimation method is conducted to determine the local heat/mass transfer coefficients on the upward facing surface of the effusion plate. The two plates are placed in parallel position with gap distances of 1, 2, 4 and 6 times of effusion hole diameter. The effects of hole arrangements of the plates are studied for staggered, square, and hexagonal arrays. The experiments are conducted at Reynolds number of 10,000 based on the effusion hole diameter. The results show that the smaller hole size in the staggered array has the higher transfer coefficients on the stagnation region due to the formation of higher momentum flows through the impingement holes. In the square array, heat/mass transfer on the target plate is more uniform as the number of impingement holes increases. High and uniform heat/mass transfer coefficients are obtained in the hexagonal array.

  • PDF

Cavitating Flow Characteristics around a 2-Dimensional Hydrofoil Section (2차원 날개 단면 주위의 캐비테이팅 유동 특성 연구)

  • Choi, Jung-Eun;Chung, Seok-Ho;Lee, Dong-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.74-82
    • /
    • 2007
  • Recently, the erosion due to cavitation frequently occurs on a horn-type rudder of a high-speed large container carrier. It is necessary to understand the flow characteristics around a rudder in fully wetted and cavitating flow condition, and the process of generation and collapse of cavitation for a rudder design to minimize the cavity-induced erosion. The flow characteristics around a two-dimensional hydrofoil(NACA66) are investigated through the computational method utilizing a viscous flow theory applied to a cavitation model. The computational results from the viscous flow theory are verified by the comparison with the experimental results, and are compared with those from the potential flow theory. The effects of angle of attack, Reynolds number, cavitation number, and thickness ratio on the cavitating flow are also investigated.

NUMERICAL SIMULATIONS OF TWO DIMENSIONAL INCOMPRESSIBLE FLOWS USING ARTIFICIAL COMPRESSIBILITY METHOD (가상 압축성 기법을 이용한 이차원 비압축성 유동의 수치모사)

  • Lee, H.R.;Yoo, I.Y.;Kwak, E.K.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.389-396
    • /
    • 2010
  • In this paper, a new computational code was developed using Chorin's artificial compressibility method to solve the two-dimensional incompressible Navier-Stokes equations. In spatial derivatives, Roe's flux difference splitting was used for the inviscid flux, while central differencing was used for the viscous flux. Furthermore, AF-ADI with dual time stepping method was implemented for accurate unsteady computations. Two-equation turbulence models, Menter's $k-{\omega}$ SST model and Coakley's $q-{\omega}$ model, hae been adopted to solve high-Reynolds number flows. A number of numerical simulations were carried out for steady laminar and turbulent flow problems as well as unsteady flow problem. The code was verified and validated by comparing the results with other computational results and experimental results. The results of numerical simulations showed that the present developed code with the artificial compressibility method can be applied to slve steady and unsteady incompressible flows.

  • PDF

Effect of Pulsations on Flow and Heat Transfer Characteristics of an Impinging Jet (충돌제트의 유동 및 열전달 특성에 미치는 맥동의 영향)

  • Lee, Eun-Hyeon;Lee, Seong-Hyeok;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1869-1878
    • /
    • 2001
  • Experiments are carried out to investigate the effect of pulsations on the flow and heat transfer characteristics of an axisymmetric impinging jet on a flat plate heated by using a gold coated aim. Vertex motion in the impinging jet is visualized using a fog generator, and a thermochromatic liquid crystal (TLC) technique is used to measure the time averaged local temperature distributions on the impingement plate. In addition, the quantitative data for mean velocity and turbulence intensity are obtained employing hot-wire anemometer. Parameters such as pulsating frequency (f = 0, 10 and 20 Hz) and the nozzle-to-palate spacing (H/D = 2, 10) are considered at the jet Reynolds number of 20,000. Consequently, the significant changes of flow structure and local Nusselt number distribution due to pulsations are observed. In the case of H/D = 2, the enhanced heat transfer coefficient exceeding 30 % is observed at the stagnation point. At the high H/D, heat transfer rate increases with pulsation frequency.