DOI QR코드

DOI QR Code

Effect of Pulsations on Flow and Heat Transfer Characteristics of an Impinging Jet

충돌제트의 유동 및 열전달 특성에 미치는 맥동의 영향

  • Published : 2001.12.01

Abstract

Experiments are carried out to investigate the effect of pulsations on the flow and heat transfer characteristics of an axisymmetric impinging jet on a flat plate heated by using a gold coated aim. Vertex motion in the impinging jet is visualized using a fog generator, and a thermochromatic liquid crystal (TLC) technique is used to measure the time averaged local temperature distributions on the impingement plate. In addition, the quantitative data for mean velocity and turbulence intensity are obtained employing hot-wire anemometer. Parameters such as pulsating frequency (f = 0, 10 and 20 Hz) and the nozzle-to-palate spacing (H/D = 2, 10) are considered at the jet Reynolds number of 20,000. Consequently, the significant changes of flow structure and local Nusselt number distribution due to pulsations are observed. In the case of H/D = 2, the enhanced heat transfer coefficient exceeding 30 % is observed at the stagnation point. At the high H/D, heat transfer rate increases with pulsation frequency.

Keywords

References

  1. Hoogendorrn, C.J., 1977, 'The Effect of Turbulence on Heat Transfer at a Stagnation Point,' International Journal of Heat and Mass Transfer, Vol. 20, pp.1333-1338 https://doi.org/10.1016/0017-9310(77)90029-1
  2. Kataoka, K., Suguro, M., Degawa, H., Maruo, K. and Mihata, I., 1987, 'The Effect of Surface Renewal Due to Large-Scale Eddies on Jet Impingement Heat Transfer,' International Journal of Heat and Mass Transfer, Vol. 30, pp.559-567 https://doi.org/10.1016/0017-9310(87)90270-5
  3. Liu, T. and Sullivan, J.P., 1996, 'Heat Transfer and Flow Structures in an Excited Circular Impinging jet,' International Journal of Heat and Mass Transfer, Vol. 39, No. 17, pp. 3695-3706 https://doi.org/10.1016/0017-9310(96)00027-0
  4. Azevedo, L.F.A., Webb, B.W. and Queiroz, M., 1994, 'Pulsed Air Jet Impingement Heat Transfer,' Experimental Thermal and Fluid Science, Vol. 8, pp. 206-213 https://doi.org/10.1016/0894-1777(94)90049-3
  5. Mladin, E.C. and Zumbrunnen, D.A., 1995, 'Dependence of Heat Transfer to a Pulsating Stagnation Flow on Pulse Characteristics,' Journal of Thermophysics and Heat Transfer, Vol. 9, No.1, pp. 181-192
  6. Sheriff, H. S. and Zumbrunnen, D. A., 1974, 'Effect of Flow Pulsations on the Cooling Effectiveness of an Impinging Jet,' ASME Journal of Heat Transfer, Vol. 111, pp. 889-896
  7. Zumbrunnen, D. A. and Aziz, M., 1993, 'Convective Heat Transfer Enhancement Due to Intermittency in an Impinging Jet,' ASME Journal of Heat Transfer, Vol. 115, pp. 91-98
  8. Mladin, E.C. and Zumbrunnen, D.A., 1997, 'Local Convective Heat Transfer to Submerged Pulsating Jets,' International Journal of Heat and Mass Transfer, Vol. 40, No. 14, pp. 3305-3321 https://doi.org/10.1016/S0017-9310(96)00380-8
  9. Goldstein, R. J. and Cho, H. H., 1995, 'A Review of Mass Transfer Measurements Using Naphthalene Sublimation,' Experimental Thermal and Fluid Science, Vol. 10, pp. 416-434 https://doi.org/10.1016/0894-1777(94)00071-F
  10. Camci, C; Kim K. and Hippensteele, S.A, 1992, 'A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies,' ASME Journal of Heat Transfer, Vol. 114, pp. 765-775
  11. Farina, D.J., Hacker, J.M., Moffat, R.J. and Eaton, J.K., 1994, 'Illuminant Invariant Calibration of Thermochromic Liquid Crystals,' Experimental Thermal and Fluid Science, Vol. 9, pp. 1-12 https://doi.org/10.1016/0894-1777(94)90002-7
  12. Baughn, J.W., 1995, 'Liquid Crystal Methods for Studying Turbulent Heat Transfer,' International Journal of Heat and Fluid Flow, Vol. 16, Issue 5, pp. 365-375 https://doi.org/10.1016/0142-727X(95)00042-O
  13. Colucci, D.W. and Viskanta, R., 1996, 'Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet,' Experimental Thermal and Fluid Science, Vol. 13, pp. 71-80 https://doi.org/10.1016/0894-1777(96)00015-5
  14. Gardon, R and Akfirat, J. C., 1965, 'The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets,' International Journal of Heat and Mass Transfer, Vol. 8, pp. 1261-1272 https://doi.org/10.1016/0017-9310(65)90054-2
  15. Kunio Kataoka, 1990, 'Impingement Heat Transfer Augmentation Due to Large Scales Eddies,' Heat Transfer 1990, pp. 255-273
  16. Jambunathan K, Lai, E., Moss, M.A. and Button, B.L., 1992, 'A Review of Heat Transfer Data for Single Circular Jet Impingement,' International Journal of Heat and Fluid Flows, Vol. 13, No.2, pp.106-115 https://doi.org/10.1016/0142-727X(92)90017-4
  17. Hoogendoom, C.J., 1977, 'The Effect of Turbulence on Heat Transfer at a Stagnation Point,' International Journal of Heat and Mass Transfer, Vol. 20, pp. 1333-1338 https://doi.org/10.1016/0017-9310(77)90029-1
  18. Huber, A.M. and Viskanta, R, 1994, 'Heat transfer to a Confined Impinging Array of Air Jets with Spent Air Exits,' ASME Journal of Heat Transfer, Vol. 116, pp. 570-576
  19. Lytle, D. and Webb, B.W., 1991, 'Secondary Heat Transfer Maxima for Air Jet Impingement at Low Nozzle-to-Plate Spacings,' in Experimental Heat Transfer, Fluid Mechanics, and Thermudynamics, I.E Keffer, RK Shah and E.N. Ganic, Eds., pp.776-783, Elsevier, New York
  20. Popiel, C.O. and Boguslawski, L., 1988, 'Effect of Flow Structure on the heat or mass transfer on a Flat plate in Impinging Round jet,' 2nd UK National Conf. on Heat Transfer, University of Strathclyde, UK, September 14-16, Vol. 1 pp. 663-685
  21. Kataoka, K Suguro, M., Degawa, H., Maruo, K and Mihata, I., 1987, 'The Effect of Surface Renewal Due to Large-Scale Eddies on Jet Impingement Heat Transfer,' International Journal of Heat and Mass Transfer, Vol. 30, No. 43, pp.559-567 https://doi.org/10.1016/0017-9310(87)90270-5
  22. Gardon, Rand Akfirat, J.C., 1965, 'The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets,' International Journal of Heat and Mass Transfer, Vol. 8, pp.1261-1272 https://doi.org/10.1016/0017-9310(65)90054-2