• Title/Summary/Keyword: High resolution mass spectrometry

Search Result 121, Processing Time 0.028 seconds

Quantification of Fargesin in Mouse Plasma Using Liquid Chromatography-High Resolution Mass Spectrometry: Application to Pharmacokinetics of Fargesin in Mice

  • Lee, Min Seo;Lim, Chang Ho;Bang, Young Yoon;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • v.13 no.1
    • /
    • pp.20-25
    • /
    • 2022
  • Fargesin, a tetrahydrofurofuranoid lignan isolated from Flos Magnoliae, shows anti-inflammatory, anti-oxidative, anti-allergic, and anti-hypertensive activities. To evaluate the pharmacokinetics of fargesin in mice, a sensitive, simple, and selective liquid chromatography-high resolution mass spectrometric method using electrospray ionization and parallel reaction monitoring mode was developed and validated for the quantification of fargesin in mouse plasma. Protein precipitation of 6 µL mouse plasma with methanol was used as sample clean-up procedure. The standard curve was linear over the range of 0.2-500 ng/mL in mouse plasma with the lower limit of quantification level at 0.2 ng/mL. The intra- and inter-day coefficient variations and accuracies for fargesin at four quality control concentrations including were 3.6-11.3% and 90.0-106.6%, respectively. Intravenously injected fargesin disappeared rapidly from the plasma with high clearance values (53.2-55.5 mL/min/kg) at 1, 2, and 4 mg/kg doses. Absolute bioavailability of fargesin was 4.1-9.6% after oral administration of fargesin at doses of 1, 2, and 4 mg/kg to mice.

Accurate Measurement of Arsenic in Laver by Gravimetric Standard Addition Method Combined with High Resolution Inductively Coupled Plasma Mass Spectrometry

  • Lee, Kyoung-Seok;Kim, Hyeon-Ji;Yim, Yong-Hyeon;Kim, Jeongkwon;Hwang, Euijin
    • Mass Spectrometry Letters
    • /
    • v.5 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • A gravimetric standard addition method combined with internal standard calibration has been successfully developed for the accurate analysis of total arsenic in a laver candidate reference material. A model equation for the gravimetric standard addition approach using an internal standard was derived to determine arsenic content in samples. Handlings of samples, As standard and internal standard were carried out gravimetrically to avoid larger uncertainty and variability involved in the volumetric preparation. Germanium was selected as the internal standard because of its close mass to the arsenic to minimize mass-dependent bias in mass spectrometer. The ion signal ratios of $^{75}As^+$ to $^{72}Ge^+$ (or $^{73}Ge^+$) were measured in high resolution mode ($R{\geq}10,000$) to separate potential isobaric interferences by high resolution ICP/MS. For method validation, the developed method was applied to the analysis of arsenic content in the NMIJ 7402-a codfish certified reference material (CRM) and the result was $37.07mg{\cdot}kg^{-1}{\pm}0.45mg{\cdot}kg^{-1}$ which is in good agreement with the certified value, $36.7mg{\cdot}kg^{-1}{\pm}1.8mg{\cdot}kg^{-1}$. Finally, the certified value of the total arsenic in the candidate laver CRM was determined to be $47.15mg{\cdot}kg^{-1}{\pm}1.32mg{\cdot}kg^{-1}$ (k = 2.8 for 95% confidence level) which is an excellent result for arsenic measurement with only 2.8 % of relative expanded uncertainty.

Simultaneous Determination of α-Amanitin and β-Amanitin in Mouse Plasma Using Liquid Chromatography-High Resolution Mass Spectrometry

  • Bang, Young Yoon;Lee, Min Seo;Lim, Chang Ho;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • v.12 no.3
    • /
    • pp.112-117
    • /
    • 2021
  • α-Amanitin and β-amanitin are highly toxic bicyclic octapeptides responsible for the poisoning of poisonous mushrooms such as Amanita, Galerina, and Lepiota by inhibiting RNA polymerase II, DNA transcription, and protein synthesis. A sensitive, simple, and selective liquid chromatography-high resolution mass spectrometric method using parallel reaction monitoring mode was developed and validated for the simultaneous determination of α- and β-amanitin in mouse plasma to evaluate the toxicokinetics of α- and β-amanitin in mice. Protein precipitation of 5 μL mouse plasma sample with methanol as sample clean-up procedure and use of negative electrospray ionization resulted in better sensitivity and less matrix effect. The calibration curves for α- and β-amanitin in mouse plasma were linear over the range of 0.5-500 ng/mL. The intra- and inter-day coefficient of variations and accuracies for α- and β-amanitin at four quality control concentrations were 3.1-14.6% and 92.5-115.0%, respectively. The present method was successfully applied to the toxicokinetic study of α- and β-amanitin after an oral administration of α- and β-amanitin at 1.5 mg/kg dose to male ICR mice.

A High-Lateral Resolution MALDI Microprobe Imaging Mass Spectrometer Utilizing an Aspherical Singlet Lens

  • Han, Sang Yun;Kim, Hwan Jin;Ha, Tae Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.207-210
    • /
    • 2013
  • We report the construction of a MALDI imaging mass spectrometer equipped with a specially designed laser focusing lens, a compact aspherical singlet lens, that obtains a high-lateral imaging resolution in the microprobe mode. The lens is specially designed to focus the ionization laser (${\lambda}$ = 355 nm) down to a $1{\mu}m$ diameter with a long working distance of 34.5 mm. With the lens being perpendicular to the sample surface and sharing the optical axis with the ion path, the imaging mass spectrometer achieved an imaging resolution of as good as $5{\mu}m$ along with a high detection sensitivity of 100 fmol for peptides. The mass resolution was about 900 (m/${\Delta}m$) in the linear TOF mode. The high-resolution capability of this instrument will provide a new research opportunity for label-free imaging studies of various samples including tissues and biochips, even for the study at a single cell level in the future.

Optimum Radius Size between Cylindrical Ion Trap and Quadrupole Ion Trap

  • Chaharborj, Sarkhosh Seddighi;Kiai, Seyyed Mahmod Sadat;Arifin, Norihan Md;Gheisari, Yousof
    • Mass Spectrometry Letters
    • /
    • v.6 no.3
    • /
    • pp.59-64
    • /
    • 2015
  • Quadrupole ion trap mass analyzer with a simplified geometry, namely, the cylindrical ion trap (CIT), has been shown to be well-suited using in miniature mass spectrometry and even in mass spectrometer arrays. Computation of stability regions is of particular importance in designing and assembling an ion trap. However, solving CIT equations are rather more difficult and complex than QIT equations, so, analytical and matrix methods have been widely used to calculate the stability regions. In this article we present the results of numerical simulations of the physical properties and the fractional mass resolutions m/Δm of the confined ions in the first stability region was analyzed by the fifth order Runge-Kutta method (RKM5) at the optimum radius size for both ion traps. Because of similarity the both results, having determining the optimum radius, we can make much easier to design CIT. Also, the simulated results has been performed a high precision in the resolution of trapped ions at the optimum radius size.

Determination of Ni, Cr, Mo in Low Alloy Steel Reference Materials by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (동위원소희석 유도결합플라스마질량분석법에 의한 저 합금강 표준시료중의 Ni, Cr, Mo의 분석)

  • Suh, Jungkee;Woo, Jinchoon;Min, Hyungsik;Yim, Myeongcheul
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.82-89
    • /
    • 2003
  • Isotope dilution mass spectrometry (IDMS) was applied to the determination of Ni, Cr, Mo in low alloy steel reference materials. The Mo isotope ratio measurement was performed by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP/MS) using ammonia as a reaction cell gas. In the case of Ni and Cr measurement, all data were obtained at medium resolution mode (m/${\Delta}m=3000$) of double focusing sector field high resolution inductively coupled plasma mass spectrometry (HR-ICP/MS). For the method validation of the technique was assessed using the certified reference materials such as NIST SRM 361, NIST SRM 362, NIST SRM 363, NIST SRM 364, NIST SRM 36b. This method was applied to the determination of Ni, Cr and Mo in low alloy steel sample (CCQM-P25) provided by NMIJ for international comparison study.

Generation of Water Droplet Ion Beam for ToF-SIMS Analysis

  • Myoung Choul Choi;Ji Young Baek;Aram Hong;Jae Yeong Eo;Chang Min Choi
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.147-152
    • /
    • 2023
  • The increasing demand for two-dimensional imaging analysis using optical or electronic microscopic techniques has led to an increase in the use of simple one-dimensional and two-dimensional mass spectrometry imaging. Among these imaging methods, secondary-ion mass spectrometry (SIMS) has the best spatial resolution using a primary ion beam with a relatively insignificant beam diameter. Until recently, SIMS, which uses high-energy primary ion beams, has not been used to analyze molecules. However, owing to the development of cluster ion beams, it has been actively used to analyze various organic molecules from the surface. Researchers and commercial SIMS companies are developing cluster ion beams to analyze biological samples, including amino acids, peptides, and proteins. In this study, a water droplet ion beam for surface analysis was realized. Water droplets ions were generated via electrospraying in a vacuum without desolvation. The generated ions were accelerated at an energy of 10 keV and collided with the target sample, and secondary ion mass spectra were obtained for the generated ions using ToF-SIMS. Thus, the proposed water droplet ion-beam device showed potential applicability as a primary ion beam in SIMS.

A study on the optimal HPLC condition for peptides complex analysis using mass spectrometry (질량분석기를 단백질 분석에 적용하기 위한 고성능액체크로마토그래피 최적조건 연구)

  • Kwon, Sung Won;Park, Chul Hong
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.78-81
    • /
    • 2003
  • Peptides separation in high performance liquid chromatography (HPLC) is very important for the analysis of total proteins using mass spectrometry rather than two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In this study, we investigated the optimal HPLC condition of peptides for the use of mass fingerprinting. As a result of pursuing a combination of solvent additives for HPLC, water and acetonitile containing both 0.1% trifluoroacetic acid and 0.1% acetic acid respectively showed the most efficient resolution and sensitivity.

Compositional Characterization of Petroleum Heavy Oils Generated from Vacuum Distillation and Catalytic Cracking by Positive-mode APPI FT-ICR Mass Spectrometry

  • Kim, Eun-Kyoung;No, Myoung-Han;Koh, Jae-Suk;Kim, Sung-Whan
    • Mass Spectrometry Letters
    • /
    • v.2 no.2
    • /
    • pp.41-44
    • /
    • 2011
  • Molecular compositions of two types of heavy oil were studied using positive atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Vacuum gas oil (VGO) was generated from vacuum distillation of atmospheric residual oil (AR), and slurry oil (SLO) was generated from catalytic cracking of AR. These heavy oils have similar boiling point ranges in the range of 210-$650^{\circ}C$, but they showed different mass ranges and double-bond equivalent (DBE) distributions. Using DBE and carbon number distributions, aromatic ring distributions, and the extent of alkyl side chains were estimated. In addition to the main aromatic hydrocarbon compounds, those containing sulfur, nitrogen, and oxygen heteroatoms were identified using simple sample preparation and ultra-high mass resolution FT-ICR MS analysis. VGO is primarily composed of mono- and di-aromatic hydrocarbons as well as sulfur-containing hydrocarbons, whereas SLO contained mainly polyaromatic hydrocarbons and sulfur-containing hydrocarbons. Both heavy oils contain polyaromatic nitrogen components. SLO inludes shorter aromatic alkyl side chains than VGO. This study demonstrates that APPI FT-ICR MS is useful for molecular composition characterization of petroleum heavy oils obtained from different refining processes.

Study on Photodegradable Water-Soluble Compounds of Expanded Polystyrene

  • Lee, Seulgidaun;Kim, Sunghwan
    • Mass Spectrometry Letters
    • /
    • v.12 no.3
    • /
    • pp.118-124
    • /
    • 2021
  • Many previous studies have focused on revealing the harmfulness of microplastic particles, whereas very few studies have focused on the effects of chemicals, particularly photooxidation product. In this study, products of photodegradation from expanded polystyrene (EPS), compounds produced by photolysis by ultraviolet (UV) light, were investigated. EPS was directly irradiated and photolyzed using a UV lamp, and then the extracted sample was analyzed using high-resolution mass spectrometry (HRMS). Multiple ionization techniques, including electrospray ionization, atmospheric pressure chemical ionization, and atmospheric pressure photoionization, were used. In total, >300 compounds were observed, among which polystyrene monomer, dimer, and oxidized products were observed. In this work, the data presented clearly demonstrate that it is necessary to identify and monitor oxidized plastic compounds and assess their effect on the environment.