• Title/Summary/Keyword: High resolution imaging

Search Result 904, Processing Time 0.024 seconds

Preliminary Study of Performance Evaluation of a Dual-mode Compton Camera by Using Geant4 (Geant4 몬테칼로 전산모사 툴킷을 이용한 이중모드 컴프턴 카메라 최적화 설계 및 성능평가)

  • Park, Jin Hyung;Seo, Hee;Kim, Seoung Hoon;Kim, Young Soo;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.191-196
    • /
    • 2012
  • A double-scattering type Compton camera which is appropriate to imaging a high-energy gamma source has been developed for nuclear material surveillance at Hanyang University. The double-scattering type Compton camera can provide high imaging resolution; however, it has disadvantage of relatively low imaging sensitivity than existing single-scattering type Compton camera. In this study, we introduce a novel concept of a dual-mode Compton camera which incorporates two different types of Compton camera, i.e., single- and double-scattering type. The dual-mode Compton camera can operate high-resolution mode and high-sensitivity mode in a single system. To maximize its performance, the geometrical configuration was optimized by using Geant4 Monte Carlo simulation toolkit. In terms of imaging sensitivity, high-sensitivity mode had higher sensitivity than high-resolution mode up to 100 times while high imaging resolution of the double-scattering Compton camera was maintained.

MR Contrast Agents and Molecular Imaging (MR조영제와 분자영상)

  • Moon, Woo-Kyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.205-208
    • /
    • 2004
  • The two major classes of magnetic resonance (MR) contrast agents are paramagnetic contrast agents, usually based on chelates of gadolinium generating T1 positive signal enhancement, and super-paramagnetic contrast agents that use mono- or polycrystalline iron oxide to generate strong T2 negative contrast in MR images. These paramagnetic or super-paramagnetic complexes are used to develop new contrast agents that can target the specific molecular marker of the cells or tan be activated to report on the physiological status or metabolic activity of biological systems. In molecular imaging science, MR imaging has emerged as a leading technique because it provides high-resolution three-dimension maps of the living subject. The future of molecular MR imaging is promising as advancements in hardware, contrast agents, and image acquisition methods coalesce to bring high resolution in vivo imaging to the biochemical sciences and to patient care.

Development and performance evaluation of large-area hybrid gamma imager (LAHGI)

  • Lee, Hyun Su;Kim, Jae Hyeon;Lee, Junyoung;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2640-2645
    • /
    • 2021
  • We report the development of a gamma-ray imaging device, named Large-Area Hybrid Gamma Imager (LAHGI), featuring high imaging sensitivity and good imaging resolution over a broad energy range. A hybrid collimation method, which combines mechanical and electronic collimation, is employed for a stable imaging performance based on large-area scintillation detectors for high imaging sensitivity. The system comprises two monolithic position-sensitive NaI(Tl) scintillation detectors with a crystal area of 27 × 27 cm2 and a tungsten coded aperture mask with a modified uniformly redundant array (MURA) pattern. The performance of the system was evaluated under several source conditions. The system showed good imaging resolution (i.e., 6.0-8.9° FWHM) for the entire energy range of 59.5-1330 keV considered in the present study. It also showed very high imaging sensitivity, successfully imaging a 253 µCi 137Cs source located 15 m away in 1 min; this performance is notable considering that the dose rate at the front surface of the system, due to the existence of the 137Cs source, was only 0.003 µSv/h, which corresponds to ~3% of the background level.

Super-Resolution Optical Fluctuation Imaging Using Speckle Illumination

  • Kim, Min-Kwan;Park, Chung-Hyun;Park, YongKeun;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.403.1-403.1
    • /
    • 2014
  • In conventional far-field microscopy, two objects separated closer than approximately half of an emission wavelength cannot be resolved, because of the fundamental limitation known as Abbe's diffraction limit. During the last decade, several super-resolution methods have been developed to overcome the diffraction limit in optical imaging. Among them, super-resolution optical fluctuation imaging (SOFI) developed by Dertinger et al [1], employs the statistical analysis of temporal fluorescence fluctuations induced by blinking phenomena in fluorophores. SOFI is a simple and versatile method for super-resolution imaging. However, due to the uncontrollable blinking of fluorophores, there are some limitations to using SOFI for several applications, including the limitations of available blinking fluorophores for SOFI, a requirement of using a high-speed camera, and a low signal-to-noise ratio. To solve these limitations, we present a new approach combining SOFI with speckle pattern illumination to create illumination-induced optical fluctuation instead of blinking fluctuation of fluorophore.. This technique effectively overcome the limitations of the conventional SOFI since illumination-induced optical fluctuation is possible to control unlike blinking phenomena of fluorophore. And we present the sub-diffraction resolution image using SOFI with speckle illumination.

  • PDF

The Evaluation of Image Quality using Time of Flight in Intracranial Magnetic Resonance Imaging : Comparison with 1.5 T and 3.0 T (뇌혈관 자기공명영상에서 Time-of-flight(TOF) 기법을 이용한 영상의 질 평가: 1.5 T 와 3.0 T 자기공명영상 비교)

  • Goo, Eunhoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.17 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • Intracrnial 3D TOF MR angiography was performed in 30 normal volunteers with both 1.5 and 3.0 T MRI system with high resolutions. Used Voxel sizes were $0.39{\times}0.39{\times}0.2$(1.5 T) and $0.19{\times}0.19{\times}0.35$(3.0 T), respectively. High image quality and depiction of small vessel branches were equality demonstrated with 1.5 T and 3.0 T HR TOF MRA(p<0.05). Intracranial high resolution TOF MRA with 1.5 T and 3.0 T provides high diagnostic information with having merits and demerits in depiction of vascular branches.

  • PDF

Imaging Mode Design and Performance Characteristics of the X-band Small SAR Satellite System

  • Kwag, Young-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.2
    • /
    • pp.157-175
    • /
    • 2000
  • A synthetic aperture radar (SAR) system is able to provide all-weather, day-and- night superior imaging capability of the earth surface, and thus is extremely useful in surveillance for both civil and military applications. In this paper, the X-band high resolution spaceborne SAR system design is demonstrated with the key design performance for a given mission and system requirements characterized by the small satellite system. The SAR multi-mode imaging technique is presented with a critical parameter assessment, and the standard mode results are analyzed in terms of the image quality performances. In line with the system requirement X-band SAR payload and ground reception/processing subsystems are designed and the major design results are presented with the key performance characteristics. This small satellite SAR system shows the wide range of imaging capability with high resolution, and proves to be an effective surveillance systems in the light weight, high performance and cost-effective points of view.

Advances and Applications of Mass Spectrometry Imaging in Neuroscience: An Overview

  • Bharath S. Kumar
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.57-78
    • /
    • 2023
  • Understanding the chemical composition of the brain helps researchers comprehend various neurological processes effectively. Understanding of the fundamental pathological processes that underpin many neurodegenerative disorders has recently advanced thanks to the advent of innovative bioanalytical techniques that allow high sensitivity and specificity with chemical imaging at high resolution in tissues and cells. Mass spectrometry imaging [MSI] has become more common in biomedical research to map the spatial distribution of biomolecules in situ. The technique enables complete and untargeted delineation of the in-situ distribution characteristics of proteins, metabolites, lipids, and peptides. MSI's superior molecular specificity gives it a significant edge over traditional histochemical methods. Recent years have seen a significant increase in MSI, which is capable of simultaneously mapping the distribution of thousands of biomolecules in the tissue specimen at a high resolution and is otherwise beyond the scope of other molecular imaging techniques. This review aims to acquaint the reader with the MSI experimental workflow, significant recent advancements, and implementations of MSI techniques in visualizing the anatomical distribution of neurochemicals in the human brain in relation to various neurogenerative diseases.

Interferometric Synthetic Aperture Millimeter-wave Radiometer for the High Resolution Imaging

  • Kim, Yong-Hoon;Choi, Jung-Hee;Kang, Gum-Sil
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.122-126
    • /
    • 1999
  • The imaging characteristics of a 2-D interferometric synthetic aperture radiometer, such as an angular resolution, depend largely on the type of an antenna array. In this paper, different array configurations of antenna are studied and compared with each array types to get more high resolution image in spatial. T-, X- and Y- types of antenna array are considered and the performances of each type are analyzed considering spatial resolution. The simulation results of candidate antenna types are presented in this paper. In case of Y-type the coverage area of the visibility function is wide and the angular resolution is high more than the others. X-type array shows the good performance for side lobe level.

  • PDF

High-Resolusion Magnetic Resonance Imaging of Carotid Atherosclerotic Plaque (경동맥 죽상경화반의 고해상도 자기공명영상)

  • Byun, Woo-Mok;Cho, Jae-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.21 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • A thromboembolic stroke is believed to be precipitated by a rupture of vulnerable atheromatous plaques. Until recently the assessment of a further risk of stroke in high-risk patients in whom atherosclerosis has presented with a transient ischaemic attack (TIA), has been confined to a quantitative assessment of the luminal patency of the internal carotid artery. These traditional stratification parameters are no longer believed to be the most accurate predictors of a thrombo-embolism. This is because the process of vessel wall remodeling can maintain a luminal patency, and consequently, quite large friable plaques may remain unidentified. Accordingly, there is a need for an improved risk assessment. The fibrous cap of a vulnerable plaque is thinner, and an intraplaque hemorrhage and inflammation can occur during the development of atherosclerotic plaque. Several imaging methods for identifying vulnerable plaques have been developed. Recently, high resolution magnetic resonance (MR) imaging has emerged as an accurate non-invasive tool that can characterize the carotid plaque components in vivo. A High resolution carotid magnetic resonance is capable of distinguishing an intact, thick fibrous cap from a thin and ruptured cap in carotid plaque. In addition, a plaque MR can identify the active inflammation and detect a hemorrhage. High resolution carotid MR imaging is a valuable noninvasive method for quantifying the plaque components and identifying vulnerable plaque.

  • PDF

Spontaneous Intracranial Vertebral Artery Dissection in a 2-Year-Old Child Diagnosed with High-Resolution MRI: a Case Report

  • Heo, Subin;Han, Miran;Kim, Sung Hwan;Choi, Jin Wook
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.259-263
    • /
    • 2019
  • Although many imaging modalities can play some roles in the diagnosis of vertebral artery dissection (VAD), digital subtraction angiography (DSA) remains the gold standard method, with the highest detection rate and ability to assist in planning for endovascular treatment. However, this tool is often avoided in children because its invasive nature and it exposes them to radiation. High resolution magnetic resonance imaging (HR-MRI) have been suggested to be a reliable and non-invasive alternative, but it has never been discussed in children in whom vertebral artery dissection is a rare condition. In this report, we evaluate a case of a 2-year-old child who initially presented with cerebellar symptoms, and was early diagnosed with vertebral artery dissection using HR- MRI and was successfully treated.