• Title/Summary/Keyword: High resolution aerial image

Search Result 168, Processing Time 0.031 seconds

A study of Landcover Classification Methods Using Airborne Digital Ortho Imagery in Stream Corridor (고해상도 수치항공정사영상기반 하천토지피복지도 제작을 위한 분류기법 연구)

  • Kim, Young-Jin;Cha, Su-Young;Cho, Yong-Hyeon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.207-218
    • /
    • 2014
  • The information on the land cover along stream corridor is important for stream restoration and maintenance activities. This study aims to review the different classification methods for mapping the status of stream corridors in Seom River using airborne RGB and CIR digital ortho imagery with a ground pixel resolution of 0.2m. The maximum likelihood classification, minimum distance classification, parallelepiped classification, mahalanobis distance classification algorithms were performed with regard to the improvement methods, the skewed data for training classifiers and filtering technique. From these results follows that, in aerial image classification, Maximum likelihood classification gave results the highest classification accuracy and the CIR image showed comparatively high precision.

Estimation of Canopy Cover in Forest Using KOMPSAT-2 Satellite Images (KOMPSAT-2 위성영상을 이용한 산림의 수관 밀도 추정)

  • Chang, An-Jin;Kim, Yong-Min;Kim, Yong-Il;Lee, Byoung-Kil;Eo, Yan-Dam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.83-91
    • /
    • 2012
  • Crown density, which is defined as the proportion of the forest floor concealed by tree crown, is important and useful information in various fields. Previous methods of measuring crown density have estimated crown density by interpreting aerial photographs or through a ground survey. These are time-consuming, labor-intensive, expensive and inconsistent approaches, as they involve a great deal of subjectivity and rely on the experience of the interpreter. In this study, the crown density of a forest in Korea was estimated using KOMPSAT-2 high-resolution satellite images. Using the image segmentation technique and stand information of the digital forest map, the forest area was divided into zones. The crown density for each segment was determined using the discriminant analysis method and the forest ratio method. The results showed that the accuracy of the discriminant analysis method was about 60%, while the accuracy of the forest ratio method was about 85%. The probability of extraction of candidate to update was verified by comparing the result with the digital forest map.

Feasibility Analysis of Precise Sensor Modelling for KOMPSAT-3A Imagery Using Unified Control Points (통합기준점을 이용한 KOMPSAT-3A 영상의 정밀센서모델링 가능성 분석)

  • Yoon, Wansang;Park, HyeongJun;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1089-1100
    • /
    • 2018
  • In this paper, we analyze the feasibility of establishing a precise sensor model for high-resolution satellite imagery using unified control points. For this purpose, we integrated unified control points and the aerial orthoimages from the national land information map (http://map.ngii.go.kr/ms/map/NlipMap.do) operated by the National Geographic Information Institute (NGII). Then, we collected the image coordinates corresponding to the unified control point's location in the satellite image. The unified control points were used as observation data for establishing a precise sensor model. For the experiment, we compared the results of precise sensor modeling using GNSS survey data and those using unified control points. Our experimental results showed that it is possible to establish a precise sensor model with around 2 m accuracy when using unified control points.

Detection of Damaged Pine Tree by the Pine Wilt Disease Using UAV Image (무인항공기(UAV) 영상을 이용한 소나무재선충병 의심목 탐지)

  • Lee, Seulki;Park, Sung-jae;Baek, Gyeongmin;Kim, Hanbyeol;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.359-373
    • /
    • 2019
  • Bursaphelenchus xylophilus(Pine wilt disease) is a serious threat to the pine forest in Korea. However, dead wood observation by Pine wilt disease is based on field survey. Therefore, it is difficult to observe large-scale forests due to physical and economic problems. In this paper, high resolution images were obtained using the unmanned aerial vehicle (UAV) in the area where the pine wilt disease recurred. The damaged tree due to pine wilt disease was detected using Artificial Neural Network (ANN), Support Vector Machine (SVM) supervision classification technique. Also, the accuracy of supervised classification results was calculated. After conducting supervised classification on accessible forests, the reliability of the accuracy was verified by comparing the results of field surveys.

A High-speed Automatic Mapping System Based on a Multi-sensor Micro UAV System (멀티센서 초소형 무인항공기 기반의 고속 자동 매핑 시스템)

  • Jeon, Euiik;Choi, Kyoungah;Lee, Impyeong
    • Spatial Information Research
    • /
    • v.23 no.3
    • /
    • pp.91-100
    • /
    • 2015
  • We developed a micro UAV based rapid mapping system that provides geospatial information of target areas in a rapid and automatic way. Users can operate the system easily although they are inexperienced in UAV operation and photogrammetric processes. For the aerial data acquisition, we constructed a micro UAV system mounted with a digital camera, a GPS/IMU, and a control board for the sensor integration and synchronization. We also developed a flight planning software and data processing software for the generation of geo-spatial information. The processing software operates automatically with a high speed to perform data quality control, image matching, georeferencing, and orthoimage generation. With the system, we have generated individual ortho-images within 30 minutes from 57 images of 3cm resolution acquired from a target area of $400m{\times}300m$.

Multiresolution 4- 8 Tile Hierarchy Construction for Realtime Visualization of Planetary Scale Geological Information (행성 규모 지리 정보의 실시간 시각화를 위한 다계층 4-8 타일 구조의 구축)

  • Jin, Jong-Wook;Wohn, Kwang-Yun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.12-21
    • /
    • 2006
  • Recently, Very large and high resolution geological data from aerial or satellite imagery are available. Many researches and applications require to do realtime visualization of interest geological area or entire planet. Important operation of wide-spreaded terrain realtime visualization technique is the appropriate model resolution selection from pre-processed multi-resolution model hierarchy depend upon participant's view. For embodying such realtime rendering system with large geometric data, Preprocessing multi-resolution hierarchy from large scale geological information of interest area is required. In this research, recent Cubic multiresolution 4-8 tile hierarchy is selected for global planetary applications. Based upon the tile hierarchy, It constructs the selective terminal level tile mesh for original geological information area and starts to sample individual generated tiles for terminal level tiles. It completes the hierarchy by constructing intermediate tiles with low pass filtering in bottom-up direction. This research embodies series of efficient cubic 4-8 tile hierarchy construction mechanism with out-of-core storage. The planetary scale Mars' geographical altitude data and image data were selected for the experiment.

  • PDF

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.

Development of the Precision Image Processing System for CAS-500 (국토관측위성용 정밀영상생성시스템 개발)

  • Park, Hyeongjun;Son, Jong-Hwan;Jung, Hyung-Sup;Kweon, Ki-Eok;Lee, Kye-Dong;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.881-891
    • /
    • 2020
  • Recently, the Ministry of Land, Infrastructure and Transport and the Ministry of Science and ICT are developing the Land Observation Satellite (CAS-500) to meet increased demand for high-resolution satellite images. Expected image products of CAS-500 includes precision orthoimage, Digital Surface Model (DSM), change detection map, etc. The quality of these products is determined based on the geometric accuracy of satellite images. Therefore, it is important to make precision geometric corrections of CAS-500 images to produce high-quality products. Geometric correction requires the Ground Control Point (GCP), which is usually extracted manually using orthoimages and digital map. This requires a lot of time to acquire GCPs. Therefore, it is necessary to automatically extract GCPs and reduce the time required for GCP extraction and orthoimage generation. To this end, the Precision Image Processing (PIP) System was developed for CAS-500 images to minimize user intervention in GCP extraction. This paper explains the products, processing steps and the function modules and Database of the PIP System. The performance of the System in terms of processing speed, is also presented. It is expected that through the developed System, precise orthoimages can be generated from all CAS-500 images over the Korean peninsula promptly. As future studies, we need to extend the System to handle automated orthoimage generation for overseas regions.

Improving Field Crop Classification Accuracy Using GLCM and SVM with UAV-Acquired Images

  • Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.93-101
    • /
    • 2024
  • Accurate field crop classification is essential for various agricultural applications, yet existing methods face challenges due to diverse crop types and complex field conditions. This study aimed to address these issues by combining support vector machine (SVM) models with multi-seasonal unmanned aerial vehicle (UAV) images, texture information extracted from Gray Level Co-occurrence Matrix (GLCM), and RGB spectral data. Twelve high-resolution UAV image captures spanned March-October 2021, while field surveys on three dates provided ground truth data. We focused on data from August (-A), September (-S), and October (-O) images and trained four support vector classifier (SVC) models (SVC-A, SVC-S, SVC-O, SVC-AS) using visual bands and eight GLCM features. Farm maps provided by the Ministry of Agriculture, Food and Rural Affairs proved efficient for open-field crop identification and served as a reference for accuracy comparison. Our analysis showcased the significant impact of hyperparameter tuning (C and gamma) on SVM model performance, requiring careful optimization for each scenario. Importantly, we identified models exhibiting distinct high-accuracy zones, with SVC-O trained on October data achieving the highest overall and individual crop classification accuracy. This success likely stems from its ability to capture distinct texture information from mature crops.Incorporating GLCM features proved highly effective for all models,significantly boosting classification accuracy.Among these features, homogeneity, entropy, and correlation consistently demonstrated the most impactful contribution. However, balancing accuracy with computational efficiency and feature selection remains crucial for practical application. Performance analysis revealed that SVC-O achieved exceptional results in overall and individual crop classification, while soybeans and rice were consistently classified well by all models. Challenges were encountered with cabbage due to its early growth stage and low field cover density. The study demonstrates the potential of utilizing farm maps and GLCM features in conjunction with SVM models for accurate field crop classification. Careful parameter tuning and model selection based on specific scenarios are key for optimizing performance in real-world applications.

Comparison of Change Detection Accuracy based on VHR images Corresponding to the Fusion Estimation Indexes (융합평가 지수에 따른 고해상도 위성영상 기반 변화탐지 정확도의 비교평가)

  • Wang, Biao;Choi, Seok Geun;Choi, Jae Wan;Yang, Sung Chul;Byun, Young Gi;Park, Kyeong Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • Change detection technique is essential to various applications of Very High-Resolution(VHR) satellite imagery and land monitoring. However, change detection accuracy of VHR satellite imagery can be decreased due to various geometrical dissimilarity. In this paper, the existing fusion evaluation indexes were revised and applied to improve VHR imagery based change detection accuracy between multi-temporal images. In addition, appropriate change detection methodology of VHR images are proposed through comparison of general change detection algorithm with cross-sharpened image based change detection algorithm. For these purpose, ERGAS, UIQI and SAM, which were representative fusion evaluation index, were applied to unsupervised change detection, and then, these were compared with CVA based change detection result. Methodologies for minimizing the geometrical error of change detection algorithm are analyzed through evaluation of change detection accuracy corresponding to image fusion method, also. The experimental results are shown that change detection accuracy based on ERGAS index by using cross-sharpened images is higher than these based on other estimation index by using general fused image.