• Title/Summary/Keyword: High quality dry

Search Result 807, Processing Time 0.032 seconds

Research on the Quality Characteristics of Domestic Colostrum according to the Processing Methods Employed (국내산 초유의 가공방법에 따른 품질특성 연구)

  • Jeong, Seok-Geun;Ham, Jun-Sang;Kim, Dong-Hun;Ahn, Chong-Nam;Chae, Hyun-Seok;You, Young-Mo;Jang, Ae-Ra;Kwon, Il-Kyung;Lee, Seung-Gyu
    • Food Science of Animal Resources
    • /
    • v.29 no.4
    • /
    • pp.457-465
    • /
    • 2009
  • The characteristics of Holstein colostrum according to the methods that were employed in processing it were analyzed in this study to improve its industrial utilization. Colostrum samples were collected from the dairy farm of the National Institute of Animal Science (NIAS). The milk fat, protein, lactose, and SNF contents of colostrum were 4.34, 6.99, 3.37, and 11.10%, respectively. The effects of spray drying, freeze drying, freezing, acidification, and inoculation of lactic-acid bacteria on the characteristics of colostrum were then compared. The freezing of colostrum was found to be proper for long-term storage in a farm. Freeze-dried colostrum powder could not meet the processing requirements and the component standards for animal products in terms of the total bacterial and coliform bacteria counts, but spray-dried colostrum powder could meet the microbiological requirements because of its bactericidal effect during the spray-dry treatment. The inoculation of lactic-acid bacteria showed a better inhibitory effect on coliform than the acidification treatment, but protein precipitation appeared because of the low pH and the high acidity. To estimate the effects of the processing methods employed on the IgG of colostrum, the IgG contents of the milk treated by long temperature long time (LTLT) ($65^{\circ}C$, 30 min), by inoculating the lactic acid bacteria starter, by spray drying, and by freeze drying were measured. The IgG contents of the colostrum were changed significantly by the processing treatment employed, from 53.98 mg/mLto 33.28, 34.82, 21.98, and 36.89 mg/mL, respectively.

Characteristics of Pelletized Swine Manure Compost (돈분뇨 퇴비의 펠렛가공 효과)

  • Jeong, K.H.;Kim, J.H.;Choi, D.Y.;Park, C.H.;Kwag, J.H.;Yoo, Y.H.;Han, M.S.;Jeong, M.S.;Won, H.H.;Yoon, T.Y.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.3
    • /
    • pp.201-210
    • /
    • 2008
  • Farmers directly spread the livestock manure compost on their arable land as an organic fertilizer. However, there are some difficult problems to solve. first, we are unsure of whether the livestock manure compost can meet the nutritional demand of plant. Second, application of the current powered livestock manure compost to crop land is very difficult work due to heavy weight of compost and its powdered shape. For this reason, this study was carried out to develope high quality pelletized livestock manure compost. In pelletizing process with composted manure, the optimal water content for pelletizing was around 30$\sim$40%. When rice bran was mixed with 5% as a bonding agent on volume basis, the pelletizing effect was remarkably improved. On a dry matter basis, the contents of N and P of manure compost were 1.31%, and 0.58%, respectively. After pelletizing, the contents of compost pelleted were 1.37% and 0.54%, respectively. The same parameters of pelletized compost made by screw type Instrument were 1.37% and 0.53%, respectively. The other hand, N and P content of pelletized compost made by pellet mill type instrument were 1.06% and 0.18%, respectively.

  • PDF

Effects of Sowing Mixed Legume Forage and Applying Cattle Manure on the Productivity and Organic Hanwoo Feeding Capacity of Whole Crop Wheat (콩과 사료작물의 혼파와 우분의 시용이 총체 밀의 생산성과 유기한우 사육능력에 미치는 영향)

  • Jo, Ik-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.2
    • /
    • pp.359-372
    • /
    • 2015
  • This study was to assess the effects of sowing mixed legume forage and applying fermented cattle manure on the productivity and feed value of whole crop wheat (WCW) as a representative of winter crops and also to estimate feeding capacity of Korean native cattle (Hanwoo) per unit area by defining optimal application levels of cattle manure for more fertile soil and manure recycling for the purpose of reduced environmental pollution and efficient production of organic forage contributable to production of organic animal products. Sowing mixed legume forage significantly (p<0.05) increased yields of dry matter (DM), crude protein (CP) and total digestible nutrients (TDN) for WCW compared to WCW alone sowing, but there were no differences between mixed sowing treatments. The yields of DM, CP and TDN were significantly (p<0.05) higher in 100~150 kg N/ha. The CP and acid detergent fiber (ADF) contents were highest in mixed sowing with hairy vetch, followed by sowing mixed forage pea and WCW alone (p<0.05). There were no differences in CP among cattle manure application levels. As nitrogen application level increased, ADF content increased (p<0.05), but TDN content decreased (p<0.05). Feeding capacity of organic Hanwoo (head/ha) weighing 450 kg of body weight with 400 g of daily gain significantly (p<0.05) increased due to mixed sowing with legume forage, and with increasing application levels of fermented cattle manure, feeding capacity significantly (p<0.05) increased. The results indicated that mixed-sowing of WCW and legume forage not only reduced nitrogen application level of fermented cattle manure by over 50 kg per ha but also increased their feed value and productivity, and feeding capacity. This would be contributable to diversity of forage resources as well as production of organic animal product by creating low cost and high quality of forage.

Studies on the Durability of Mortars (모르타르의 내구성에 관한 연구)

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1798-1802
    • /
    • 1969
  • The experiment was carried out as one of the basic studies to improve the alkali-resistance of cement mortars and it was conducted to investigate some propetties of mortars relating to weight losses when exposed to 0.1 N salution of sodium hydroxide. The experiment and the results obtained are summarized as follow; 1. The specimens used in this experiment were made of 5 centi-meter cubes of mortar having such various ratios of mix by weight as 1 : 1, 1 : 3, 1 : 5, 1 : 7 and 1 : 10. 2. Physical tests included compressive strengths at 7 days, 28 days, 3 months, and 6 month, and 5 hour boiling absorption test. 3. In alkali test, every specimen was immersed into 0.1 N solutions of sodium hydroxide. The specimens exposed to the alkali solution were weighed to determine the weight losses of the alkail-corroded at one week interval for 7 week's exposure and the old alkali solutions were also changed to fresh solutions when weighed the weight losses by alkali attack at one week interval. 4. According to the alkail test after 7 week's exposure, no weight losses were observed on ratios of mix 1:1 and 1:3 and slight weight losses occurred on ratios of mix 1:5 and 1:7, but relatively large amount of weight losses were showed by 36.6 per-cent on ratios of mix 1:10. It was also found that the weight losses of the alkali-corroded were extremely lower than those of the acid-corroded at the some concentrations as 0.1 N of solutions. 5. In order to make better quality of alkali-resistant mortar it might recomend that a 1:7 mix or richemixes, use of small amount of mixing water for watertight, 20 per cent or less absorption by 5 hour boiling 1,600 kirogram per cubic meters or denser densities by absolute dry base are available for physical properties of mortar. It could conclude acid-resistant mortars were so high alkali-resistant, that it is expected to make and improve the acid-resistant mortars for getting rid of damages by alkali attack.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • 금동혁;김용운
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-83
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well. 2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air. 3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying. 4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis. 5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time. 6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture. 7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation. 8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise. 11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss. 12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method. 13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated. Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year. 14. Required fan horsepower and energy for the intermittent fan operation were 3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation. 15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use. 16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.64-64
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well.2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air.3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying.4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis.5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time.6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture.7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation.8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise.11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss.12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method.13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated.Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year.14. Required fan horsepower and energy for the intermittent fan operation were3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation.15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use.16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

Effect of mixed Cropping with Legume and using fermented Cattle Manure on Productivity of Whole Crop Barley (Hordeum vulgare L.) and Organic Hanwoo feeding Capacity in Gyeongbuk Region of Korea (경북지역에서 콩과 사료작물의 혼파 재배와 발효 우분의 시용이 청보리의 생산성과 유기 한우 사육능력에 미치는 영향)

  • Jo, Ik-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.3
    • /
    • pp.525-537
    • /
    • 2016
  • This study was aimed to grow organic forage as a prime requirement for organic Hanwoo cattle production over a period of 3 years (2012~2015) in Gyeongbuk region, Korea through mixed cropping of winter fodder barley with legume and application of fermented cattle manure. The effect of barley-legume mixed cropping and application of different levels of fermented cattle manure was studied on forage productivity of whole-crop barley (WCB) and evaluation of feeding capacity of Korean native cattle (Hanwoo) per unit area. The collected data was analyzed using SAS 9.3 software. Barley-legume mixed cropping increased (P<0.05) yields of dry matter (DM), crude protein (CP) and total digestible nutrients (TDN) as compared to those of sole WCB as monoculture. Similarly, acid detergent fiber (ADF) contents and relative feed value (RFV) were also higher (P<0.05) in barley-legume mixed sowing forage compared with those of sole WCB as monoculture. In case of manure application, yields of DM, CP and TDN were also found (P<0.05) highest in 100~150 kg N/ha. However, varying cattle manure levels did not influence (P>0.05) CP and neutral detergent fiber (NDF) contents. In response to increasing nitrogen application level, ADF content increased (P<0.05) but TDN content and RFV decreased (P<0.05). The Barley-legume mixed sowing and increasing application levels of fermented cattle manure also significantly enhanced (P<0.05) feeding capacity of organic Hanwoo (head/ha) having 450 kg body weight with 400 g of daily gain. Findings of present study indicated that barley-legume biculture not only cut nitrogen application level of fermented cattle manure by over 50 kg per ha but also increased their feed value and productivity of forage as compared to WCB monoculture. This would be contribution to the diversity of forage resources as well as production of organic animal product by creating low cost and high quality organic forage.

Effect of Silicate-Coated Rice Seed on Healthy Seedling Development and Bakanae Disease Reduction when Raising Rice in Seed Boxes (벼 상자육묘에서 규산코팅볍씨의 건묘육성과 벼키다리병 경감효과)

  • Kang, Yang-Soon;Kim, Wan Jung;Roh, Jae-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • We investigated the effect of silicate coating of rice seeds on bakanae disease incidence and the quality of seedlings raised in seedling boxes and transplanted into pots. The silicate-coated rice seed (SCS) was prepared as follows. Naturally infested rice seeds not previously subjected to any fungicidal treatment were dressed with a mixture of 25% silicic acid at pH 11 and 300-mesh zeolite powder at a ratio of 50 g dry seed - 9 mL silicic acid - 25 g zeolite powder. The following nursery conditions were provided : Early sowing, dense seeding in a glass house with mulching overnight and no artificial heating, which were the ideal conditions for determining the effect on the seed. The nursery plants were evaluated for Gibberella. fujikuroi infection or to determine the recovery to normal growth of infected nursery plants in the Wagner pot. Seedlings emerged 2-3 days earlier for the SCS than they did for the non-SCS control, while damping-off and bakanae disease incidence were remarkably reduced. Specifically, bakanae disease incidence in the SCS was limited to only 7.8% for 80 days after sowing, as compared to 91.6% of the non-SCS control. For the 45-days-old SCS nursery seedlings, the fresh weight was increased by 11% and was two times heavier, with only mild damage compared to that observed for non-SCS. Even after transplanting, SCS treatment contributed to a lower incidence of further infections and possibly to recovery of the seedlings to normal growth as compared to that observed in symptomatic plants in the pot. The active pathogenic macro-conidia and micro-conidia were considerably lower in the soil, root, and seedling sheath base of the SCS. In particular, the underdeveloped macro-conidia with straight oblong shape without intact septum were isolated in the SCS ; this phenotype is likely to be at a comparative etiological disadvantage when compared to that of typical active macro-conidia, which are slightly sickle-shaped with 3-7 intact septa. A active intact conidia with high inoculum potential were rarely observed in the tissue of the seedlings treated only in the SCS. We propose that promising result was likely achieved via inhibition of the development of intact pathogenic conidia, in concert with the aerobic, acidic conditions induced by the physiochemical characteristics associated with the air porosity of zeolite, alkalinity of silicate and the seed husk as a carbon source. In addition, the resistance of the healthy plants to pathogenic conidia was also important factor.

Chemical Properties of Peunggang River and Effect of Irrigation Source on the Growth of Tomato and Cucumber (서낙동강 유역 평강천의 수질 특성과 용수원에 따른 토마토 및 오이의 생육)

  • Rhee, Han-Cheol;Cho, Myeung-Whan;Lee, Si-Young;Choi, Gyeong-Lee;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.322-327
    • /
    • 2007
  • This study was conducted to analysis the chemical properties of Peunggang river and investigate the effect of irrigation sources on the growth of tomato and cucumber. The salt concentration in Peunggang river was high by $3.22{\sim}3.62dS{\cdot}m^{-1}s$ from March to May and lower gradually from April to February of next year, which was also lower in upper stream than in middle or low stream of Peunggang river. The growth such as plant height, fresh weight and dry weight in tomato and cucumber was better in drain water and tap water irrigation than in PR water (Peunggang river) irrigation. Mean fruit weight was highest in the tap water, and that of cucumber was no significance in the treatments. The number of setting fruit was lower in the PR water than in the treatments, and which was no significance between rain water and tap water. The yield of tomato and cucumber was found to be highest by 10,594 and 11,826 kg/10a in tap water, respectively and also lowest in the PR water among the three treatments. The fruit quality, soluble solids of tomato shows a tendency to increase in the PR water as compared with the other treatment, and the rate of blossom-end rote was higher by 13.6% in the PR water. T-N and P content of tomato and cucumber were no significance in the treatments. Ca content was lowest, but Na content highest in the PR water. It was thought that a rain water and tap water as alternative irrigation source of a PR water were proper.

Evaluation on Feed-Nutritional Change of Food Waste According to Different Processing Methods and Trouble-shooting Strategy (음식물쓰레기의 가공처리방법별 사료영양소 함량 변화 평가 및 문제점 개선 방안)

  • Jee, K.S.;Baik, Y.H.;Kwak, W.S.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.513-524
    • /
    • 2005
  • This study was conducted to introduce recycling procedures of food waste(FW) as feed according to the dehydration, semi-dehydration fermentation and liquid fermentation methods through the on-site survey of companies related, to trace physico-chemical components and nutritional losses depending upon the processing stage for each method and finally to suggest more desirable methodology for the efficient utilization of FW as animal feed. For the dehydration method, dewatering of FW alone reduced(P<0.05) moisture(approximately 10%) and ether extract contents and increased(P<0.05) fiber contents. Dewatering and subsequent dehydration of FW decreased(P<0.05) contents of ether extract, limiting amino acids such as lysine, methionine and histidine, pepsin digestibility of protein by half, and NaCl content by 40%, increased(P<0.05) contents of fiber, crude ash, Ca and P, and did not alter(P>0.05) pH. The semi-dehydration fermentation method of FW did not affect(P>0.05) the chemical components, pepsin digestibility of protein, pH and NaCl content. For the liquid fermentation method, pasteurization and fermentation of FW decreased(P<0.05) contents of dry matter, ether extract, crude fiber, lysine and NaCl; however, it did not affect(P>0.05) other chemical components, pepsin digestibility of protein and pH. Among the processing methods, nutrient losses were highest for the dehydration method(25% of metabolizable energy loss, 12% of organic matter loss) and little for the semi-dehydration and liquid fermentation methods. The on-site survey of companies related revealed that the existence of foreign materials in FW products were problematic for all the three companies surveyed, thus it was necessary to develop a more efficient screener. Before feeding FW-containing diets to pigs, high quality of protein and energy feedstuffs needed to be fortified for the dehydration method. For the semi-dehydration fermentation method, the scientific diet formulation technology was required at the initial mixing stage. For the liquid fermentation method, possibly most energetic and proteinaceous feeds needed to be supplemented for the normal animal growth.