• Title/Summary/Keyword: High purity hydrogen

Search Result 112, Processing Time 0.039 seconds

Evaluation of Scratch Characteristics of Diaphragm for Application of Hydrogen Compressor Parts

  • Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.212-215
    • /
    • 2023
  • Diaphragm compressors play a crucial role in safely compressing large volumes of high-purity hydrogen gas without contamination or leakage, thereby ensuring quality and reliability. Diaphragm compressors use a thin, flat, triple-layered diaphragm plate that is subjected to repetitive piston pressure for compression. They are usually made of metallic materials such as stainless steel or Inconel owing to their high-pressure resistance. However, since they are consumable components, they fail due to fatigue from repetitive pressure and vibration stress. This study aims to evaluate the scratch characteristics of diaphragms in operational environments by conducting tests on three different samples: Inconel 718, AISI 301, and Teflon-coated AISI 301. The Inconel 718 sample underwent a polishing process, the AISI 301 sample used raw material, and the Teflon coating was applied to the AISI 301 substrate at a thickness of 50 ㎛. To assess the scratch resistance, reciprocating motion friction tests were performed using a tribometer, utilizing 220 and 2000 grit sandpapers as the counter materials. The results of the friction tests suggested that the Teflon-coated sample exhibited the lowest initial friction coefficient and consistently maintained the lowest average friction coefficient (0.13 and 0.11 with 220 and 2000 grit, respectively) throughout the test. Moreover, the Teflon-coated diaphragm showed minimal wear patterns, indicating superior scratch resistance than the Inconel 718 and AISI 301 samples. These findings suggest that Teflon coatings may offer an effective solution for enhancing scratch resistance in diaphragms, thereby improving compressor performance in high-pressure hydrogen applications.

The Study of Alumina Ceramic to Metal Bonding (알루미나 소결체와 금속간의 접합에 관한 연구)

  • 김종희;김형준
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.2
    • /
    • pp.89-97
    • /
    • 1978
  • The basic mechanism of adherence in sintered high purity alumina ceramic-to-metal bonding was studied. Emphasis was placed on flux composition, porosity of the fired ceramics, and metallizing mixtures. The study was conducted on 95 and 99.5% alumina, using molydbenum-manganese, molybdenum-manganese-silicon dioxide metallizing compositions. Metallizing was performed in wet hydrogen (dew point, +17$^{\circ}C$) at 145$0^{\circ}C$ for 45min. This experiment indicated that adhernece mechanism of ultra high purity alumina ceramic was attributed to formation of $MnAl_2O_$4, and in the case of 95% alumina containing glass, the migration of glass from the interface into the void of the metal coating was the main role to the adhrence. It showed also that greater the bond-strength was resulted as porosity was increased.

  • PDF

Carbon Nanotube Synthesis with High Purity by Introducing of NH3 Etching Gas (암모니아 식각 가스 도입에 의한 고순도 탄소나노튜브의 합성)

  • Lee, Sunwoo;Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.782-785
    • /
    • 2013
  • Multi-walled carbon nanotubes were synthesized on Ni catalyst using thermal chemical vapor deposition. By introducing ammonia gas during the CNT synthesis process, clean and vertically aligned CNTs without impurities could be prepared. As the ammonia gas increased a partial pressure of hydrogen in the mixed gas during the CNT synthesis process, we could control the CNT synthesis rate appropriately. As the ammonia gas has an etching ability, amorphous carbon species covering the catalyst particles were effectively removed. Therefore catalyst particles could maintain their catalytic state actively during the synthesis process. Finally, we could obtain clean and vertically aligned CNTs by introducing $NH_3$ gas during the CNT synthesis process.

Influence of the Water Vapor Content on the Hydrogen Reduction Process of Nanocrystalline NiO

  • Jung, Sung-Soo;An, Hyo-Sang;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.315-319
    • /
    • 2010
  • In this study, the hydrogen reduction behavior of ball-milled NiO nanopowder was investigated depending on the partial pressure of water vapor. The hydrogen reduction behavior was analyzed by thermogravimetry and hygrometry under heating to 873 K in hydrogen. In order to change the partial pressure of the water vapor, the dew point of hydrogen was controlled in the range of 248 K~293 K by passing high-purity hydrogen through a saturator that contained water. Interestingly, with the increase in the dew point of the hydrogen atmosphere, the first step of the hydrogen reduction process decreased and the second step gradually increased. After the first step, a pore volume analysis revealed that the pore size distribution in the condition with a higher water vapor pressure shifted to a larger size, whereas the opposite appearedat a lower pressure. Thus, it was found that the decrease in the pore volume during the chemical reaction controlled process at a dew point of 248 K caused a reduction in retardation in the diffusion controlled process.

A Study on the Analysis of Safety Standard and Evaluation of Safety Performance for the 5 Nm3 /hr Class Alkaline Water Electrolysis System (5 Nm3 /hr급 알카라인 수전해 시스템 안전기준 분석 및 안전성능 평가에 관한 연구)

  • Kim, Ji-Hye;Lee, Eun-Kyung;Kim, Min-Woo;Oh, Gun-Woo;Lee, Jung-Woon;Kim, Woo-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.65-75
    • /
    • 2018
  • The wind energy produced at night is being discarded because of the excess power generated at night compared to daytime. To solve this problem, In this study, we analyzed the evaluation contents for evaluation of domestic and overseas water electrolysis systems and drew contents for safety performance contents test of the water electrolysis system based on the evaluation contents. The test contents produced the efficiency measurement test, the hydrogen generated pressure test, and the hydrogen purity test. And the safety performance evaluation of the alkaline water electrolysis system of $5Nm^3/hr$ was performed based on the results. As a result, the hydrogen generation was calculated as $5.10Nm^3/hr$ and the stack efficiency was $4.97kWh/Nm^3$. The purity of the hydrogen generated was 99.993% and it was confirmed that it produced high purity hydrogen. I think will help us assess and build safety performance of water electrolysis systems in the future.

Synthesis of High Purity Multiwalled and Singlewalled Carbon Nanotubes by Arc-discharge

  • Kim, Keun-Soo;Park, Young-Soo;An, Kay-Hyeok;Jeong, Hee-Jin;Kim, Won-Seok;Choi, Young-Chul;Lee, Seung-Mi;Moon, Jeong-Mi;Chung, Dong-Chul;Bae, Dong-Jae;Lim, Seong-Chu;Lee, Young-Seak;Lee, Young-Hee
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.53-59
    • /
    • 2000
  • The synthetic methods for high yield of multiwalled carbon nanotube (MWNT) and singlewalled carbon nanotube (SWNT) with high purity by arc discharge have been investigated. MWNTs were synthesized under different pressures of helium and the gas mixture of argon and hydrogen. Relatively high pressure of 300-400 torr was required for high yield MWNTs synthesis at low bias voltage of about 20 V and 55 A, whereas low pressure of about 100 torr was required for SWNTs. The introduction of hydrogen gases during the synthesis of MWNTs improved the yield and purity of the samples. The SWNTs were synthesized by the assistance of a small amount of mixture of transition metals, which played as a catalyst during the formation process. The purity and yield of SWNTs were higher at a lower pressure and enhanced by mixing more components of the transition metals.

  • PDF

Hydrogen Permeation Performance of Ni48Nb32Zr20 Alloy Membrane Coated with Pd by Sputtering (스퍼터링으로 Pd가 코팅된 Ni48Nb32Zr20 합금분리막의 수소 투과 성능)

  • Min Chang Shin;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.140-145
    • /
    • 2024
  • In modern times, when a change in the energy paradigm is required, hydrogen is an attractive energy source. Among these hydrogen purification technologies, technology using a membrane is attracted attention as a technology that can purify high purity hydrogen at low cost. However, palladium(Pd), which is mostly used because of its excellent hydrogen separation performance, is very expensive, so a replacement material is needed. In this study, a alloy membrane was manufactured from an alloy of niobium (Nb), which has high hydrogen permeability but is weak to hydrogen embrittlement, and nickel (Ni) and zirconium (Zr), which have low hydrogen permeability but are highly durable. Hydrogen permeation characteristics were confirmed under conditions of 350~450 ℃ at 1 to 4 bar. The maximum hydrogen permeation flux was 0.69 ml/cm2/min for the Ni48Nb32Zr20 alloy membrane without Pd coating, and 13.05 ml/cm2/min for the Pd coated alloy membrane.

Minimization of Carbon Monoxide in the High Efficient Catalytic Shift for Fuel Cell Applications (연료전지용 고효율 촉매전이 반응의 일산화탄소 저감)

  • Park, Heon;Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.528-532
    • /
    • 2007
  • The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$(steam) followed by water gas shift(WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift(HTS) and a low temperature shift(LTS). In the WGS operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about $3\sim4%$ followed to about 0.5% via a low temperature shift catalyst. The WGS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to less than 0.5%.

Influence of Oxygen Supply Method on the Performance of IGCC Plants (IGCC 플랜트에서 산소공급방식이 성능에 미치는 영향)

  • Ahn, Ji-Ho;Kim, Tong-Seop
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.3
    • /
    • pp.264-273
    • /
    • 2012
  • In this paper, two types of integrated gasification combined cycle (IGCC) plants using either an air separation unit (ASU) or an ion transport membrane (ITM), which provide the oxygen required in the gasification process, were simulated and their thermodynamic performance was compared. Also, the influence of adopting a pre-combustion $CO_2$ capture in the downstream of the gasification process on the performance of the two systems was examined. The system using the ITM exhibits greater net power output than the system using the ASU. However, its net plant efficiency is slightly lower because of the additional fuel consumption required to operate the ITM at an appropriate operating temperature. This efficiency comparison is based on the assumption of a moderately high purity (95%) of the oxygen generated from the ASU. However, if the oxygen purity of the ASU is to be comparable to that of the ITM, which is over 99%, the ASU based IGCC system would exhibit a lower net efficiency than the ITM based system.

Hydrogen Reduction Behavior of Oxide Scale in Water-atomized Iron Powder (수분사 Fe 분말의 산화물 및 이의 수소가스 환원거동)

  • Shin, Hea-Min;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.422-428
    • /
    • 2014
  • In this study, the reduction kinetics and behaviors of oxides in the water-atomized iron powder have been evaluated as a function of temperature ranging $850-1000^{\circ}C$ in hydrogen environment, and compared to the reduction behaviors of individual iron oxides including $Fe_2O_3$, $Fe_3O_4$ and FeO. The water-atomized iron powder contained a significant amount of iron oxides, mainly $Fe_3O_4$ and FeO, which were formed as a partially-continuous surface layer and an inner inclusion. During hydrogen reduction, a significant weight loss in the iron powder occurred in the initial stage of 10 min by the reduction of surface oxides, and then further reduction underwent slowly with increasing time. A higher temperature in the hydrogen reduction promoted a high purity of iron powder, but no significant change in the reduction occurred above $950^{\circ}C$. Sequence reduction process by an alternating environment of hydrogen and inert gases effectively removed the oxide scale in the iron powder, which lowered reduction temperature and/or shortened reduction time.