• Title/Summary/Keyword: High purity

Search Result 1,282, Processing Time 0.027 seconds

The Microhole Machining Characteristic According to Purity of the $Al_2O_3$ Ceramics ($Al_2O_3$ 세라믹의 순도별 미세구멍 가공특성)

  • 윤혁중;임순재;이동주;한흥삼
    • Laser Solutions
    • /
    • v.2 no.3
    • /
    • pp.32-41
    • /
    • 1999
  • This study is about Jig used in wiring when we make Probecard and Large Scale Intergrated Electronic Circuit. The most universal wiring method is molding with Bond. Polymer film is punched down and adhesives is applied after wiring. Due to shrinkage and modification many problems still have happened in the process of molding. To solve these problems, ceramic plate was introduced in the study. Using Laser, an experiment of microhole treatment on ceramic plate was proceeded. Laser energy, assistance gas, and special features by purity degree were analyzed with the 35W low capacity YAG-Laser. In the condition of energy 0.08J, frequency 20Hz and interval time 200$mutextrm{s}$, about 70${\mu}{\textrm}{m}$ microhole was adequate for the Probecard Jig. In the purity experiment of ceramic materials, high purity ceramic met with good result for microhole. But the price is too high. The shape and size of holes machined combustion gas $O_2$ were better than those in $N_2$ and Ar, the inert gas.

  • PDF

Recovery of High Purity Tin from Waste Solution of the Tin Plating by Ion-exchange and Cyclone-electrowinning (주석도금폐액으로부터 이온교환 및 사이클론 전해채취를 이용한 고순도 주석의 회수)

  • Kang, Yong-Ho;Shin, Gi-Wung;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.42-48
    • /
    • 2016
  • A research for the recovery of the metal with high purity from the waste tin plating solution was carried out. First, tin plating waste solution was tested to remove the organic substances and metallic impurities such as Fe, Zn, Na etc. using ion exchange resin having iminodiacetic functional groups (Lewatit TP 207). Second, the tin solution was purified to obtain the high purity tin solution using ion exchange resin having ethylhexyl-phosphate functional groups (Lewatit VPOC 1026). Finally, 99.98% of the high purity of tin metal can be recovered from the purified solution by cyclone type electrowinning method.

Thermodynamic Equilibrium Compositions for a $NH_3-AlCl_3-H_2$ Vapor-Phase Reacting System and Synthesis of High-Purity AlN ($NH_3-AlCl_3-H_2$ 기상반응계의 열역학적 평형조성 및 고순도 AIN 합성)

  • 현상훈;김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.33-43
    • /
    • 1986
  • The synthesis of high-purity AlN by a vapor-phase reaction was investigated using the $NH_3-AlCl_3-H_2$ reacting system. The theoretical yields of AlN were determined from th thermodynamic equilibrium composi-tions. It was shown that the yields above 90% could by obtained even in the range of relatively low temper-ature of 600-1200K. The reaction temperature and the initial amounts/ratios of the reacting gases showed significant effects on the yields but the total pressure did not. The experimental results showed that a high-purity AlN having a needle shape was the only product as a solid phase and its amount produced increased with the reaction temperature. While the degree of agglmera-tion of the synthesized AlN increased with the reaction temperature the size of each particle consisting of the agglomerates was independent of the temperature but grew from 0.09 to 0.115${\mu}{\textrm}{m}$ with the flow rate of NH3. These experimental results were compared with the theoretical aspects for the synthesis of a high-purity AlN.

  • PDF

Synthesis of High Purity Aluminum Nitride Nanopowder in Ammonia and Nitrogen Atmosphere by RF Induction Thermal Plasma (RF 유도결합 열 플라즈마를 이용한 암모니아와 질소분위기에서 고순도 AlN 나노 분말의 합성)

  • Kim, Kyung-In;Choi, Sung-Churl;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.201-207
    • /
    • 2014
  • High-purity aluminum nitride nanopowders were synthesized using an RF induction thermal plasma instrument. Ammonia and nitrogen gases were used as sheath gas to control the reactor atmosphere. Synthesized AlN nanopowders were characterized by XRD, SEM, TEM, EDS, BET, FTIR, and N-O analyses. It was possible to synthesize high-purity AlN nanoparticles through control of the ammonia gas flow rate. However, additional process parameters such as plasma power and reactor pressure had to be controlled for the production of high-purity AlN nanopowders using nitrogen gas.

Verification of Genetic Process for the High-purity Limestone in Daegi Formation by Oxygen-carbon Stable Isotope Characteristics (산소-탄소 안정동위원소특성을 이용한 대기층 고품위 석회석의 생성기작 해석)

  • Kim, Chang Seong;Choi, Seon-Gyu;Kim, Gyu-Bo;Kang, Jeonggeuk;Kim, Sang-Tae;Lee, Jonghyun;Jang, Jaeho
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.107-118
    • /
    • 2019
  • Two assertions about the process the formation of the high-purity limestone in the Taebaeksan Basin, categorized into syngenetic and epigenetic origin, are verified on the basis of its oxygen-carbon stable isotopic characteristics. The carbonate rocks sampled from the selective six high-purity limestone mines and several outcrops in the Daegi formation are featured by various colors such as the gray, light gray and dark gray. They show a wide range of oxygen stable isotope ratios (4.5 ~ 21.6 ‰), but a narrow range of carbon stable isotope ratios (-1.1 ~ 0.8 ‰, except for vein calcite), which means that they had not experienced strong hydrothermal alteration. In addition, there is no difference in the range of the oxygen stable isotope ratios by mine and color, and it is similar to the range from surrounding outcrop samples. These results indicate that the effect of the hydrothermal alteration were negligible in the generation of high-purity limestone in deposit scale. Whereas, the carbonate rocks can be divided texturally into two groups on the basis of an oxygen isotope ratio; the massive-textured or well-layered samples (>15 ‰), and the layer-disturbed (or layer-destructed) and showing over two colors in one sample (<15 ‰). In the multi-colored samples, the bright parts are characterized by the very low oxygen stable isotope ratios, compared to the dark parts, implying the increase in brightness of the carbonate rocks could be induced by the interaction between hydrothermal fluid and rock. However, these can be applied in a small scale such as one sample and are not suitable for interpretation of the generation of high-purity limestone as a deposit scale. In particular, the high oxygen isotope ratios from the recrystallized white limestone suggest that hydrothermal fluids are also rarely involved during recrystallization process. In addition, the occurrences of the high-purity limestone orebody strongly support the high-purity limestone in the area are syngenetic rather than epigenetic; the high-purity limestone layers in the area show continuous and almost horizontal shapes, and is intercalated between dolomite layers. Consequently, the overall reinterpretation based on the sequential stratigraphy over the Taebaeksan basin would play an important role to find additional reserves of the high-purity limestone.

Production of High Purity Oxygen by Combination of Membrane and PSA Methods (분리막과 PSA혼합법에 의한 고순도 산소의 제조)

  • Hwang, Sun-Tak
    • Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • There are growing needs to produce relatively high purity(99.0% or higher) oxygen at low cost. For small scale production, both pressure swing adsorption(PSA) and membrane process are competitive and less expensive or more convenient than well known cryogenic fractionation technology. A continuous membrane column(CMC) combined with a PSA oxygen generator can be employed to produce high purity oxygen continuously. The oxygen enriched gas generated by a PSA unit, with a concentration of 93~94%, is fed to the CMC that consism of three modules of poly(imide) hollow fibers. Several experiments were conducted by varying parameters, such as feed flow rate, transmembrane pressure drop, stage cut, and feed location in order to obtain a high oxygen concentration above 99.0%. A two-series unit mode was also employed with CMC operation to optimize the given membrane area.

  • PDF

Effect of Ca Implantation on the Sintering and Crack Healing Behavior of High Purity Al2O3 Using Micro-lithographic Technique - I. Formation of Crack-like Pore and Its Morphological Evolution (Ion Implantation으로 Ca를 첨가한 단결정 Al2O3의 Crack-like Pore의 Healing 거동 - I. Crack-like Pore의 형성과 Morphological Evolution)

  • 김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.834-842
    • /
    • 1997
  • Controlled Ca impurity implanted inner crack-like pore in the high purity alumina single crystal, sapphire, had been created by micro-fabrication technique, which includes ion implantation, photo-lithography, Ar ion milling, and hot press technique. The morphological change and the healing of cracklike pore in Ca doped high purity single crystal alumina, sapphire, during high temperature heat treatment in vacuum were observed using optical microscopy. The dot-like surface roughening was developed and hexagon like crystal appeared on inner surface of crack-like pore after heat treatment. Bar type crystals, probably CaO.6Al2O3, were observed on the inner surface after 1 hour heat treatment at 1, 50$0^{\circ}C$, but this bar type crystal disappeared after 1 hour heat treatment at 1, $600^{\circ}C$. This disappearance means that there should be a little increase of Ca solubility limit to alumina at this temperatures.

  • PDF

Production of High Purity Oxygen by Conbination of Membrane and PSA Methods

  • Hwang, Sun-Tak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.03a
    • /
    • pp.1-21
    • /
    • 1994
  • There are growing needs to produce relatively high purity (99.0% or higher) oxygen at low cost. For small scale production, both pressure swing adsorption (PSA) and membrane process are competitve and less expensive or more convient than well known crygenic fractionation technology. A continuous membrane colume (CMC) combined with a PSA oxygen generator can be employed to produce high purity oxygen continuosly. The oxygen-enriched gas generated by a PSA unit, with a concentration of 93-94%, is fed to the CMC that consists of three modules of poly(imide) hollow fibers. Several experiments were conducted by varying parameters, such feed flow rate, transmenbrane pressure drop, stage cut, and feed location in order to obtain a high oxygen concentration above 99.0%. A two-series unit mode was also employed with CMC operation to optimize the given membrane area.

  • PDF