• 제목/요약/키워드: High pressure pipe

검색결과 367건 처리시간 0.05초

아이스슬러리의 분기관내 압력손실과 IPF 변화에 관한 실험적 연구 (Experimental Study on Transformation of IPF and Pressure Drop in Branches with Ice Slurry)

  • 박기원;최현웅;노건상;정재천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.272-279
    • /
    • 2003
  • This study aimed to understand the effects of transporting ice slurry Particles through Pipes with branches. The experimental apparatus was constructed as ice slurry mixing tank. vortex pump, manometers for differential pressure measuring. IPF(ice packing factor) measuring instruments and branches as test sections. The experiments were carried out under various conditions. with concentration of water solution ranging between 0∼20wt% and velocity of water solution at the entry ranging between 1.5∼2.5m/s. The differential Pressure and IPF between the pipe entry and exit were measured. and flowing form was checked throughout the experiment. The pressure loss in 3d branches appeared compared with 6d branches so that it was very high. In the pressure loss of the inside and outside of branches. 6d branches was showed the difference. but was agreed in 3d branches The pressure loss according to concentration of water solution, low value appeared at 10wt% in 6d branches, at 20wt% in 3d branches. The pressure loss according to velocity, did not show large difference. The change of IPF at outlet, appeared +15∼-25% in 6d branches and 0∼-20% in 3d branches. The difference of IPF at the inside and outside of branches. appeared 10∼15% in 6d branches and maximum 5% in 3d branches.

자기공명유속계 (MRV) 에서 3차원 다중경로 선적분법을 활용한 비침습적 압력예측 방법 개발 (Development of Non-Invasive Pressure Estimation Using 3D Multi-Path Line Integration Method from Magnetic Resonance Velocimetry (MRV))

  • 장일훈;무함마드 하피즈 아리푸딘;송시몬
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.14-23
    • /
    • 2023
  • The pressure difference across stenotic blood vessels is a commonly used clinical metric for diagnosing many cardiovascular diseases. At present, most clinical pressure measurements rely solely on invasive catheterization. In this study, we propose a novel method for non-invasive pressure estimation using the incompressible Navier-Stokes equations and a 3D multi-path integration approach. We verify spatio-temporal convergence on an in-silico dataset of a cylindrical straight pipe phantom with steady and pulsatile flow fields. We then evaluate the proposed method on an in vitro dataset of reconstructed control, pre-operative, and post-operative carotid artery cases acquired from 4D flow MRI. The performance of our method is compared to existing approaches based on the pressure Poisson equation and work-energy relative pressure. The results demonstrate the proposed method's high accuracy, robustness to spatio-temporal subsampling, and reduced sensitivity to noise, highlighting its great potential for non-invasive pressure estimation.

수중 용접봉으로 용접한 누수배관 용접부위의 부식 특성 평가 (Evaluation of Corrosion Characteristics on Welding Zone of Leakage SeawaterPipe Welded by Underwater Welding Electrode)

  • 문경만;이성열;김윤해;이명훈;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1240-1247
    • /
    • 2008
  • Leakage trouble on the sea water pipeline in engine room is often resulted from a localized corrosion due to severe corrosive environment caused by both high speed and high pressure of sea water flowing through the inner pipe. In addition, when the ship is in stand-by or emergency condition, underwater welding to control the leakage of sea water from a hole of its pipe is very important in an industrial safety point of view. In this study possibility of underwater welding to control leakage of sea water and corrosion property of its welding zone were investigated with the electrochemical methods by parameters of welding methods and welding electrodes when underwater welding is achieved with a such case that sea water is being leaked out with a height at 50mm from a hole of $2.5mm{\emptyset}$ of test pipe. Corrosion resistance of weld metal zone is better than the base metal and its hardness is higher than that of the base metal. However corrosion potential of weld metal zone showed a negative value than that of the base metal, therefore weld metal zone is preferentially corroded rather than the base metal by performance of galvanic cell due to difference of corrosion potential between weld metal zone and base metal. Eventually it is suggested that leakage of sea water is successfully controlled by underwater welding,

축압식 고압 연료분사펌프 시스템 특성 해석 (Characteristics of a High Pressure Accumulator Type Fuel Injection System)

  • 박석범;구자예
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1101-1110
    • /
    • 1998
  • Computational investigation was conducted to examine the performance of a high pressure common-rail fuel injection system which is used to power a passenger car direct injection (Dl) diesel engine. The pipe flows were modeled by one dimensional wave equation and solved by implicit FDM Each volume of injector was considered as chambers with orifice nozzle in connections. These simulation results were compared with the experimental data of Ganser Hydromag. The comparison of needle life and rate of injection between simulation data and experimental data showed quite a good agreement Different shape of injection rate can be made by adjusting the size of inlet orifice and exit orifice in the piston chamber The pilot injection was accomplished by adjusting command signal.

몬테카를로법을 이용한 고온 내압 요소의 크리프 균열성장 파손확률 평가 (Evaluation of Creep Crack Growth Failure Probability for High Temperature Pressurized Components Using Monte Carlo Simulation)

  • 이진상;윤기봉
    • 한국안전학회지
    • /
    • 제21권1호
    • /
    • pp.28-34
    • /
    • 2006
  • A procedure of estimating failure probability is demonstrated for a pressurized pipe of CrMo steel used at $538^{\circ}C$. Probabilistic fracture mechanics were employed considering variations of pressure loading, material properties and geometry. Probability density functions of major material variables were determined by statistical analyses of implemented data obtained by previous experiments. Distributions of the major variables were reflected in Monte Carlo simulation and failure probability as a function of operating time was determined. The creep crack growth life assessed by conventional deterministic approach was shown to be conservative compared with those obtained by probabilistic one. Sensitivity analysis for each input variable was also conducted to understand the most influencing variables to the residual life analysis. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

유동가속부식이 잠재한 곡관내의 3차원 난류유동 해석 (Three-dimensional Turbulent Flow Analysis in Curved Piping Systems Susceptible to Flow-Accelerated Corrosion)

  • 조종철;김윤일;최석기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.900-907
    • /
    • 2000
  • The three-dimensional turbulent flow in curved pipes susceptible to flow-accelerated corrosion has been analyzed numerically to predict the pressure and shear stress distributions on the inner surface of the pipes. The analysis employs the body-fitted non-orthogonal curvilinear coordinate system and a standard $ {\kappa}-{\varepsilon}$ turbulence model with wall function method. The finite volume method is used to discretize the governing equations. The convection term is approximated by a high-resolution and bounded discretization scheme. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of a modified version of momentum interpolation scheme. The SIMPLE algorithm is employed for the pressure and velocity coupling. The numerical calculations have been performed for two curved pipes with different bend angles and curvature radii, and discussions have been made on the distributions of the primary and secondary flow velocities, pressure and shear stress on the inner surface of the pipe to examine applicability of the present analysis method. As the result it is seen that the method is effective to predict the susceptible systems or their local areas where the fluid velocity or local turbulence is so high that the structural integrity can be threatened by wall thinning degradation due to flow-accelerated corrosion.

  • PDF

Numerical determination of wind forces acting on structural elements in the shape of a curved pipe

  • Padewska-Jurczak, Agnieszka;Szczepaniak, Piotr;Bulinski, Zbigniew
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.15-27
    • /
    • 2020
  • This paper reports the study on development and verification of numerical models and analyzes of flow at high speed around structural elements in the shape of a curved pipe (e.g., a fragment of a water slide). Possibility of engineering estimation of wind forces acting on an object in the shape of a helix is presented, using relationships concerning toroidal and cylindrical elements. Determination of useful engineering parameters (such as aerodynamic forces, pressure distribution, and air velocity field) is presented, impossible to obtain from the existing standard EN 1991-1-4 (the so-called wind standard). For this purpose, flow at high speed around a torus and helix, arranged both near planar surface and high above it, was analyzed. Analyzes begin with the flow around a cylinder. This is the simplest object with a circular cross-section and at the same time the most studied in the literature. Based on this model, more complex models are analyzed: first in the shape of half of a torus, next in the shape of a helix.

LED 조명 방열 환경에서 진동형 히트파이프의 작동 특성 (Operational Characteristics of Pulsating Heat Pipes for the Application to the Heat Dissipation of LED Lighting)

  • 방광현;김형탁;박해균
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.830-836
    • /
    • 2012
  • An efficient cooling system is essential for the electronic packaging such as a high-luminance LED lighting. A special heat transport technology, Pulsating Heat Pipe (PHP), can be applied to the cooling of LED lighting. In this paper, the operational characteristics of the PHP in the imposed thermal boundary conditions of LED lighting were experimentally investigated. The experimental PHP was made of copper tubes of internal diameter of 2.1 mm. The working fluids of ethanol, FC-72, water, acetone and R-123 were chosen for comparison. The results showed that an optimum range of charging ratio exists for high cooling performance; 50% for most of the fluids. Among the five working fluids, water showed the highest heat transfer rate of 260 W. Two distinguished characteristics of pulsating direction were identified. It is also identified that high vapor pressure gradient is one of key parameters for better heat transfer performance.

카메라와 다중 레이저를 이용한 배관 탐사 로봇 기구의 적용성 평가 (Evaluation on the Application of In-Pipe Inspection Robot with Multiple Lasers and Cameras)

  • 남문호;박성욱;백승해;박순용;김창회;김승호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1780-1781
    • /
    • 2011
  • There have been numerous studies on application of robots to in-pipe inspection system. In this thesis, a mobile robot that can move through elbows and vertical pipes having diameter 100mm is developed. Defect detection technology for locating wall-thinnings, corrosions and foreign materials is developed for high temperature and pressure pipings in thermal power plants, utilizing laser sensors installed on the robot. Actual defect detection performance is evaluated with application of the developed robot system to a mock-up pipings.

  • PDF

Interfacial Wave Characteristics for Countercurrent Stratified Air-Water Flow in a Horizontal Pipe

  • Chung, Heung-June;Chun, Se-Young;Chung, Moon-Ki;No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.379-389
    • /
    • 1996
  • To experimentally investigate the several wave patterns for the horizontal countercurrent stratified air-water flow, a series of systematic experimental studies have been performed. The experiments are carried out in a horizontal pipe with 4m in length and 102mm in inner diameter. The oater and air superficial velocities vary from 0.0004 to 0.0204 and from 0 to 6m/s, respectively. The instantaneous water thickness is measured by parallel-wire conductance probes, and the wave field is recorded by high speed video camera. Also, to evaluate the wave effect on interfacial friction factor, the pressure drop is measured. Statistical data anal)sis is accomplished in order to obtain the fundamental wave parameters such as un amplitude, length and velocity, and spatial growth factor. By using these statistical parameters, the wave regime boundaries can be verified.

  • PDF