• Title/Summary/Keyword: High pressure fuel injection

Search Result 344, Processing Time 0.026 seconds

Computer Simulation of the Electronic Hydraulic Ultra - High Pressure Fuel Injection System (전자유압식 초고압 연료분사계의 시뮬레이션에 관한 연구)

  • Jang, Se-Ho;Ahn, Su-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.82-92
    • /
    • 1996
  • A computer simulation with predict the fuel injection rates and the fuel injection pressure behaviors in diesel engine fuel injection systems would by very useful in designing or improving fuel injection systems. In this paper we developed computer program in order to predict the behaviors of the fuel injection rate and the injection pressure for Electronic Hydraulic Ultra-High Pressure Fuel Injection System. We've applied the continuity and momentum equations for the hydraulic phenomena and the dynamics of individual components of the Electronic Hydraulic Fuel Injection System. To solve all the equations numerically we've applied the Runge-kutta IV method. Water hammer equations were applied for the hydraulic pipe solution, and the method of characteristics was employed in our calculations. The simulation results were compared with the experimental results for: Accumulator pressure, Injection pressure and unjection rate. As a result, The simulation results agree very well with our experimental results. We found that a large accumulator and the high speed solenoid valve were required, and the compression volume of the fuel had to be as small as possible in order to acheive ultra-high pressure fuel injection.

  • PDF

A Study on the Droplet Size Distribution of Ultra High Pressure Diesel Spray on Electronic Hydraulic Fuel Injection System (전자유압식 분사계에 의한 초고압 디젤분무의 입경분포에 관한 연구)

  • Jang, S.H.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • In order to investigate the droplet size distribution and Sauter Mean Diameter in a ultra high pressure diesel spray, fuel was injected with ultra high pressure into the environments of high pressure and room temperature by an Electronic Hydraulic Fuel Injection System. Droplet size was measured with the immersion liquid sampling technique. The immersion liquid was used a mixture of water-methycellulose solution and ethanol. The Sauter Mean Diameter decreased with increasing injection pressure, with a decrease environmental pressure (back pressure) and nozzle diameter. Increasing the injection pressure makes the fuel density distribution of the spray more homogeneous. An empirical correlation was developed among injection pressure, air density, nozzle diameter and the Sauter Mean Diameter of spray droplets.

  • PDF

A Study on a Simulation of a Fuel Injection System in a Large Low-Speed Marine Diesel Engines (박용 대형 저속 디젤기관 연료분사계통의 시뮬레이션에 관한 연구)

  • 강정석;이창식;조권회;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.43-52
    • /
    • 2000
  • In this study, a simulation program was developed, which could simulate a fuel injection system for low-speed marine diesel engine. The fuel injection system was divided into fuel injection pump, high pressure pipe and fuel injection valve. The unsteady flow in the high pressure injection pipe was analyzed by the method of characteristics, considering cavitation and variation of fuel density and bulk modulus. It was confirmed that the simulation results were good agree with experimental results of injection pressure and quantity at the high pressure distributor in fuel injection system for the training ship "M/V Hannara". And the effects of the atomizer hole diameter, maximum needle lift, plunger diameter and nozzle opening pressure were also investigated with simulating results.g results.

  • PDF

An Experimental Study on Che Spray Characteristic of Pintle Type Nozzle in a High Temperature and High Pressure Chamber (고온.고압용기 내에서 핀틀노즐의 분무특성에 관한 실험적 연구)

  • 송규근;정재연;정병국;안병규;오은탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.57-64
    • /
    • 2003
  • The characteristics of fuel spray have an important effect on engine performance such as power, specific fuel consumption and emission because fuel spray controls the mixing and combustion process in an engine. Therefore, if the characteristics of fuel spray can be measured, they can be effectively used for improving engine performance. The major factors controlling fuel spray are injection pressure, ambient pressure and engine speed. In this study, the experiment is performed in a high temperature and high pressure chamber. In experiments, spray tip penetration, spray angle and spray tip velocity are measured at various injection pressure (10 and 14 MPa), ambient pressure(3,4 and 5 MPa), fuel pump speed(500, 700 and 900 rpm). Experimental results are useful for deriving an experimental spray equation and design an optimal engine. The results showed that injection pressure, ambient pressure and fuel pump speed are important factors influencing on the characteristics of spray. 1) Injection pressure influences on the characteristics of spray. That is, as injection pressure is increased, spray angle is decreased but spray penetration and spray tip velocity is increased. 2) Spray angle and spray penetration are increased as fuel pump speed is increased.

A Theoretical Study on Flow and Pressure Variation Characteristics of Fuel Supply System in Diesel Engine (디젤엔진 연료계통의 유동 및 압력 변동특성에 관한 이론적 연구)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.12-23
    • /
    • 1993
  • Combustion phenomenon in diesel engine is mainly governed by characteristics of fuel injection and fuel spray system affected by its dimensions and operating condition. Fuel supply system is consisted of fuel injection pump, high pressure pipe and injection nozzle. In order to develope the more economical diesel fuel injection system, it is in need to carryout the fairly wide range experiments, which is quite impossible. Therefore, theoretical analysis for the numberous parameters is powerful method in this case. In the present study, equations of continuity of fuel oil in fuel injection system are solved to obtain the flow and pressure variation in diesel fuel system affected by injection pump speed, plunger diameter, pipe length and nozzle opening pressure.

  • PDF

A Study on the Simulation of the Fuel Injection System in a Large Low-speed marine Diesel Engine (박용 대형 저속 디젤기관 연료분사계통의 시뮬레이션에 관한 연구)

  • 이창식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.36-44
    • /
    • 2000
  • In his study the simulation was carried out by simplifing and modeling dividing into fuel injectioin pump high pressure pipe and fuel injection valve in the fuel injection system of a low speed marine diesel engine. A computer simulation model was developed using the method of characteristics to analyze the unsteady flow in the fuel injection system considering cavitation and variation of fuel density and bulk modulus. Comparison was commenced between the calculated data and experimental data of pressure and injection quantity at the high pressure distributor in fuel injection system for the training ship "M/V hanara" the effects of the high pressure pipe length diameter plunger diameter nozzle openning pressure were also investigated by simulating results.g results.

  • PDF

Simulation of High Pressure Common-rail Fuel Injection System (커먼레일 고압분사 시스템 수치 시뮬레이션)

  • 김홍열;구자예;나형규;김창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.162-173
    • /
    • 1998
  • The high pressure common rail injection system offers a high potential for improving emmisions and performance characteristics in large direct diesel engines. High pressures in the common rail with electronic control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine rpm and load conditions. In this study, high pressure supply pump, common rail, pipes, solenoid and control chamber, and nozzle were modeled in order to predict needle lift, rate of injection, and total injected fuel quantity. When the common rail pressure is raised up to 13.0 ㎫ and the targer injection duration is 1.0ms, the pressure drop in common rail is about 5.0㎫. The angle of effective pressurization is necessary to be optimized for the minimum pump drive torque and high pressure in common rail depending on the operating conditions. The characteristics of injection were also greatly influenced by the pressures in common rail, the areas of the inlet and exit orifice of the control chamber.

  • PDF

Hydraulic Modal Analysis of High-Pressure Common-rail Fuel Injection System for Passenger Vehicle (승용 CR 연료분사시스템에 대한 유압 Modal 분석)

  • Sung, Gisu;Kim, Sangmyeong;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • Recently, R&D demand for environmental friendly vehicle has rapidly increased due to its global environmental issues such as global warming, energy and economic crisis. Under this situation, the most realistic alternative way for environmental friendly vehicle is a clean diesel vehicle. The common-rail fuel injection system, as key technology of clean diesel vehicle, consists of a high pressure pump, common-rail, high pressure fuel line and electronic control injector. In common-rail high-pressure fuel injection system, high pressure wave of injection system and geometry of injector elements have a major effects on high-pressure fuel spray. Therefore, in this study, the numerical model was developed for analysis about the common-rail fuel pressure pulsation by using AMESim code. We could secure stability of common-rail high-pressure fuel injection system through optimal design of fuel line.

A Study on the Combustion Characteristics of Ultra High Pressure Fuel Injection System in a Diesel Engine(I) (초고압 연료분사장치 디젤기관의 연소특성에 관한 연구(I))

  • Choi, D.S.;Rhee, Kyung-Tai
    • Journal of ILASS-Korea
    • /
    • v.4 no.1
    • /
    • pp.34-44
    • /
    • 1999
  • The purposes of this study were to evaluate engine performance and to analyze smoke emission characteristics for varied injection pressures and engine operating conditions of an electronically-controlled ultra high pressure fuel injection system(UHPFIS). It was discovered that the engine performance with the present UHPFIS was far better than what was initially expected. And the UHPFIS permitted engine operation at air/fuel ratios richer than 20 : 1 without increasing smoke emissions. It was discovered that the indicated mean effective pressure was increased, while the specific fuel consumption and the amount of soot were decreased, as the fuel rail pressures were improved atomization of the fuel spray. As the intake air temperature was increased from $38\sim205^{\circ}C$ in 38 degree increments, the indicated mean effective pressure was dropped while the specific fuel consumption was increased.

  • PDF

An Experimental studies Spray characteristic of Pintle type Nozzle on High Pressure Chamber (고온.고압용기에서의 핀틀노즐의 분무특성에 관한 실험적 연구)

  • 송규근;정재연;오은탁;류호성;안병규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.67-73
    • /
    • 2002
  • The characteristics of fuel spray influence on the engine performances such as power, fuel economy and emissions. therefore, the measurement of fuel spray characteristics is very important for the improvement of heat engine. The factor which controls the fuel spray is injection pressure, ambient pressure, engine speed et al.. In :his study, We measured spray angle, spray penetration and spray tip velocity considering injection pressure(10,14㎫), ambient pressure(3,4,5㎫), fuel pump speed(500,700,900rpm) in the high temperature and pressure chamber. Experimental results are summarized as follows: 1) Injection pressure influence on the characteristics of spray namely As Injection pressure Is increased, spray angle is decreased but spray penetration and spray tip velocity is increased. 2) Spray angle, spray penetration is increased by increasing the fuel pump speed. 3) Ambient pressure plays an important role in spray characteristics.

  • PDF