• Title/Summary/Keyword: High pressure air jet

Search Result 106, Processing Time 0.028 seconds

Study on Filter Drag Due to the Change of Operation Conditions in a Pulse Air Jet-type Bag Filter[I] (충격기류식 여과집진장치에서 운전조건 변화로 인한 여과저항에 관한 연구[I])

  • Ryu, Jae-Yong;Suh, Jeong-Min;Park, Jeong-Ho;Jeon, Bo-Kyung;Choi, Kum-Chan;Son, Yoyng-Il
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.449-458
    • /
    • 2007
  • Research results for the pressure drop variance depending on operation conditions such as change of inlet concentration, pulse interval, and face velocity, etc., in a pulse air jet-type bag filter show that while at $3kg/cm^2$ whose pulse pressure is low, it is good to make an pulse interval longer in order to form the first layer, it may not be applicable to industry because of a rapid increase in pressure. In addition, the change of inlet concentration contributes more to the increase of pressure drop than the pulse interval does. In order to reduce operation costs by minimizing filter drag of a filter bag at pulse pressure $5kg/cm^2$, the dust concentration should be minimized, and when the inlet dust loading is a lower concentration, the pulse interval in the operation should be less than 70 sec, but when inlet dust loading is a higher concentration, the pulse interval should be below 30 sec. In particular, in the case that inlet dust loading is a higher concentration, a high-pressure distribution is observed regardless of pulse pressure. This is because dust is accumulated continuously in the filter bag and makes it thicker as filtration time increases, and thus the pulse interval should be set to below 30 sec. If the equipment is operated at 1m/min of face velocity, while pressure drop is low, the bag filter becomes larger and thus, its economics are very low due to a large initial investment. Therefore, a face velocity of around 1.5 m/min is considered to be the optimal operation condition. At 1.5 m/min considered to be the most economical face velocity, if the pulse interval increases, since the amount of variation in filter drag is large, depending on the amount of inlet dust loading, the operation may be possible at a lower concentration when the pulse interval is 70 sec. However, for a higher concentration, either face velocity or pulse interval should be reduced.

Flow Characteristics and Drag Reduction at Different Pressures of Counterflow Air Jets in Supersonic Flow (초음속 환경에서 역분사 공기 제트의 압력 변화에 따른 유동 특성 및 항력 감소)

  • Choi, Jongin;Lee, Jaecheong;Kang, Seungwon;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.58-65
    • /
    • 2018
  • To improve the performance of high-speed vehicles, various studies have been carried out on the head of vehicles. In this study, tests are conducted on flow characteristics and drag reduction using counterflow air jets in supersonic flow. The flow is visualized by the Schlieren method using a high-speed camera, and the drag is measured using a torque sensor according to the injection pressure conditions. The results of the measurements indicate that the flow changes from unsteady state to steady state for injection pressure ratios between 1.58 and 1.70, and drag reduction is observed as the pressure of the counterflow air jets increases.

Design Effect of Sealing Characteristics of Non-Contact Type Seal for High Speed Spindle (형상설계에 관한 고속주축용 비접촉 시일의 밀봉특성 연구)

  • 나병철;전경진;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.610-614
    • /
    • 1996
  • Sealing of lubricat-air mixture in the high performance machining conte is one of most the important characteristics to carry out enhanced lubrication. High speed spindle requires non-contact type of sealing mechanism. Evaluating an optimum seal design to minimize leakage is concerned in the aspect of flow control. Effect of geometry and leakage path are evaluated according to variation of sealing geometry, Velocity, pressure, turbulence intensity of profile is calculated to fina more efficient geometry and variables. This offers a methodological way of enhancement seal design for high speed spindle. The working fluid is regarded as two phases that are mixed flow of oil phase and air phase. It is more reasonable to simulate an oil jet or oil mist type high speed spindle lubrication. Turbulence and compressible flow model are used to evaluate a flow characteristic, This paper arranges a geometry of mostly used non-contact type seal and analyzes leakage characteristics to minimize a leakage on the same sealing area.

  • PDF

Starting Characteristics Study of Scramjet Engine Test Facility(SETF) (스크램제트 엔진 시험설비의 시동특성 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Oh, Joong-Hwan;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.15-22
    • /
    • 2011
  • Unlike most aerodynamic wind-tunnel, Scramjet Engine Test Facility(SETF) of Korea Aerospace Research Institute should simulate enthalpy condition at a flight condition. SETF is a blow-down type, high-enthalpy wind tunnel. To attain a flight condition, a highly stagnated air comes into the test cell through a supersonic nozzle. Also, an air ejector of the SETF is used for simulating altitude conditions of the engine, and facility starting. SETF has a free-jet type test cell and this free-jet type test cell can simulate a boundary layer effect between an airplane and engine using facility nozzle, but it is too difficult to predict the nature of the facility. Therefore it is required to understand the starting characteristics of the facility by experiments. In this paper, the starting characteristics of the SETF and modifications of the ejector are described.

Starting Characteristics Study of Scramjet Engine Test Facility(SETF) (스크램제트 엔진 시험설비의 시동특성 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Oh, Joong-Hwan;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.451-458
    • /
    • 2010
  • Unlike most aerodynamic wind-tunnel, Scramjet Engine Test Facility(SETF) of Korea Aerospace Research Institute should simulate enthalpy condition at a flight condition. SETF is a blow-down type, high-enthalpy wind tunnel. To attain a flight condition, a highly stagnated air comes into the test cell through a supersonic nozzle. Also, an air ejector of the SETF is used for simulating altitude conditions of the engine, and facility starting. SETF has a free-jet type test cell and this free-jet type test cell can simulate a boundary layer effect between an airplane and engine using facility nozzle, but it is too difficult to predict the nature of the facility. Therefore it is required to understand the starting characteristics of the facility by experiments. In this paper, the starting characteristics of the SETF and modifications of the ejector are described.

  • PDF

A Modeling about Penetration Behavior of Diesel Engine Liquid Fuel Spray (디젤기관의 분무선단 도달거리에 관한 모델링)

  • 안수길;배종욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.140-152
    • /
    • 1989
  • The study on the penetration of sprays during the initial phase of injection period, i.e. ignition delay period, in high speed small D.I. diesel engines are strongly affected by such behavior. To investigate the penetration of the sprays injected through single cylinderical orifice, a mathematical model was developed and compared with experimental results. In this model, radial heterogeneity of fuel density in the spray, transiency of injection pressure difference, and spray outrunning phenomenon were considered simultaneously. Experiments on the behaviors of sprays in the high pressure air chamber were conducted at various injection pressure differences and different levels of back air pressure. The behaviors of sprays injected into the chamber through the conventional Bosch injection pump were visualized with side stroboscopic illumination. Comparison of the experimental results with predictions from the mathematical model confirmed the validity of the model. It was also found that during the initial phase of the injection period the penetration of sprays vs. time appeared to have two transition points; one corresponded to disintegration point of liquid fuel jet, the other to the beginning of steady state injection.

Three Cases with the Multiple Occurrences of Freezing Rain in One Day in Korea (12 January 2006; 11 January 2008; and 22 February 2009)

  • Park, Chang-Kyun;Byun, Hi-Ryong
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.31-49
    • /
    • 2015
  • From the hourly data of 75 Korean weather stations over a 12-year period (2001~2012), this study has chosen three cases (January 12, 2006; January 11, 2008; and February 22, 2009) of multiple freezing rains and investigated the atmospheric circulations that seemed to cause the events. As a result, the receding high pressure type (2006), prevailing high pressure type (2008), and warm front type (2009) are confirmed as synoptic patterns. In all three cases, freezing rain was found in regions with a strong ascending current near the end point of a low-level jet that carried the warm humid air from low latitudes. The strong ascending current resulted from lower-level convergence and upper-level divergence. In 2006 and 2009, the melting process was confirmed. In 2008, the supercooled warm rain process (SWRP) was confirmed. In contrast to existing SWRP theory, it was found that the cool air produced at the middle atmosphere and near the earth's surface led to the formation of freezing rain. The sources of this cool air were supposed to be the evaporative latent heat and the cold advection coming from the northeast. On the other hand, a special case was detected, in which the freezing rain occurred when both the soil surface temperature and surface air temperature were above $0^{\circ}C$. The thickness distributions related to freezing rain in Korea were found to be similar to those in North America. A P-type nomogram was considered for freezing rain forecasting; however, it was not relevant enough to Korea, and few modifications were needed.

Pressure Recovery in a Supersonic Ejector of a High Altitude Turbofan Engine Testing Chamber (터보팬 엔진의 고고도 성능의 초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.53-59
    • /
    • 2010
  • This research aims in finding a more optimal ejector size for evacuating engine exhaust gasses and 20% of the cell cooling air. The remaining 80% of cell cooling air pumped into the test chamber is separately exhausted from the test chamber via a discharge port fitted with flow control valves and vacuum pump. Unlike its predecessor this configuration utilizes a smaller capture area to improve pressure recovery. The modified ejector size has a diameter of 1100mm enough to evacuate 66kg/s jet engine exhaust in addition to about 20%, 24kg/s of the cell cooling air tapped from the sterling chamber. This configurations has an area ratio of the engine exit and ejector inlet of about 1.2. Simulation results of the proposed ejector configuration, indicates improved pressure recovery.

Development of a Garlic Peeling System Using High-Pressure Water Jets (IV) - Structure and performance of a full-scale system in operation - (습식 마늘박피 시스템 개발 (IV) - 상업용 시스템의 구조와 성능 -)

  • Bae Y. H.;Yang K. W.;Baik S. K.;Kim J.;Chang Y. C.;Lee S. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.25-31
    • /
    • 2005
  • There are more than three hundred garlic peeling facilities in Korea and most of them use pressurized air for skin peeling operation. One of the major problems of using air for the peeling operation is the occurrence of excessive bruises on the flesh of peeled garlic which causes easy microbial contamination and shortening of the shelf lift. To reduce the occurrence of bruises during the peeling operation, a new type of garlic peeling system was developed which use pressurized water. In this system, high pressure water jets were used to separate garlic bulbs and to peel the skin of garlic cloves. Six commercial systems of this type had been developed and installed at several locations in Korea. The design and performance of the latest system according to three pressure levels were described in this paper. Peeling efficiency of the system was as high as $64.7\%$ in one cycle of peeling operation by three chambers installed in series. Incorporation of a sorting system based on machine vision and re-circulation of unpeeled and partially-peeled garlic enhanced peeling efficiency by additional $30\%$, resulting in total peeling efficiency of the final products of approximately $95\%$. Peeling capacity of the system was over 400 kg per hour.

Development of a design theory of a pressure vessel with combined structure of the metal and the composite (금속재와 복합재 이종구조물로 된 압력용기의 설계이론 개발)

  • Lee Bang-Eop;Kim Won-Hoon;Koo Song-Hoe;Son Young-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.61-65
    • /
    • 2006
  • A thery was developed to design a high pressure vessel with combined structure of the metal and the composite to withstand the pressure of several tens of thousands psias to reduce the weight of the impulse motor which produces high level of thrust within several tens of seconds. The elastic-plastic stress analyses were carried out to prove the validity of the design theory A combustion chamber of the impulse motor was designed by the design theory, fabricated, and tested by the hydraulic pressure and the static firings. The bursting pressures from the tests were compared to those predicted by tile design theory and the stress analyses and found to be almost the same. It will be possible to design the high pressure vessel with combined structure of the metal and the composite very easily by the proposed design theory.

  • PDF