• Title/Summary/Keyword: High power-density

Search Result 2,175, Processing Time 0.033 seconds

Effect of Total Collimation Width on Relative Electron Density, Effective Atomic Number, and Stopping Power Ratio Acquired by Dual-Layer Dual-Energy Computed Tomography

  • Jung, Seongmoon;Kim, Bitbyeol;Yoon, Euntaek;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.165-171
    • /
    • 2021
  • Purpose: This study aimed to evaluate the effect of collimator width on effective atomic number (EAN), relative electron density (RED), and stopping power ratio (SPR) measured by dual-layer dual-energy computed tomography (DL-DECT). Methods: CIRS electron density calibration phantoms with two different arrangements of material plugs were scanned by DL-DECT with two different collimator widths. The first phantom included two dense bone plugs, while the second excluded dense bone plugs. The collimator widths selected were 64 mm×0.625 mm for wider collimators and 16 mm×0.625 mm for narrow collimators. The scanning parameters were 120 kVp, 0.33 second gantry rotation, 3 mm slice thickness, B reconstruction filter, and spectral level 4. An image analysis portal system provided by a computed tomography (CT) manufacturer was used to derive the EAN and RED of the phantoms from the combination of low energy and high energy CT images. The EAN and RED were compared between the images scanned using the two different collimation widths. Results: The CT images with the wider collimation width generated more severe artifacts, particularly with high-density material (i.e., dense bone). RED and EAN for tissues (excluding lung and bones) with the wider collimation width showed significant relative differences compared to the theoretical value (4.5% for RED and 20.6% for EAN), while those with the narrow collimation width were closer to the theoretical value of each material (2.2% for EAN and 2.3% for RED). Scanning with narrow collimation width increased the accuracy of SPR estimation even with high-density bone plugs in the phantom. Conclusions: The effect of CT collimation width on EAN, RED, and SPR measured by DL-DECT was evaluated. In order to improve the accuracy of the measured EAN, RED, and SPR by DL-DECT, CT scanning should be performed using narrow collimation widths.

Planar, Air-breathing PEMFC Systems Using Sodium Borohydride ($NaBH_4$를 이용만 공기호흡형 수소연료전지에 대한 연구)

  • Kim, Jin-Ho;Hwang, Kwang-Taek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.300-308
    • /
    • 2009
  • In a pursuit of the development of alternative mobile power sources with a high energy density, a planar and air-breathing PEMFCs with a new type of hydrogen cartridge which uses onsite $H_2$ generated from sodium borohydride ($NaBH_4$) hydrolysis have been investigated for use in advanced power systems. Two types of $H_2$ generation through $NaBH_4$ hydrolysis are available: (1) using organic acids such as sulphuric acid, malic acid, and sodium hydrogen carbonate in aqueous solution with solid $NaBH_4$ and (2) using solid selected catalysts such as Pt, Ru, CoB into the stabilized alkaline $NaBH_4$ solution. It might therefore be relevant at this stage to evaluate the relative competitiveness of the two methods mentioned above. The effects of flow rate of stabilized $NaBH_4$ solution, MEA (Membrane Electrode Assembly) improvement, and type and flow control of the catalytic acidic solution have been studied and the cell performances of the planar, air-breathing PEMFCs using $NaBH_4$ has been measured from aspects of power density, fuel efficiency, energy density, and fast response of cell. In our experiments, planar, air-breathing PEMFCs using $NaBH_4$ achieved to maximum power density of 128mW/$cm^2$ at 0.7V and energy efficiency of 46% and has many advantages such as low operating temperature, sustained operation at a high power density, compactness, the potential for low cost and volume, long stack life, fast star-up and suitability for discontinuous operation.

Korea Red Ginseng Alters Electroencephalogram Spectra of Sleep-Wake Stage in Rats

  • Ma, Yuan;Eun, Jae-Soon;Cheong, Jae-Hoon;Rhee, Dong-Kwon;Hong, Jin-Tae;Oh, Ki-Wan
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.220-225
    • /
    • 2008
  • The present investigation was performed to evaluate the homeostatic regulation of sleep architecture by the ethanol extract of Korea red ginseng (KRG), since the available data were often controversial. In addition, it was also interested in whether the sleep-wake stages were differently affected by low and high doses of KRG. Each adult Wistar male rat was implanted with a transmitter for recording EEG and activity via telemetry. After one week of surgery, polygraphic signs of undisturbed sleep-wake activities were recorded for 12 h (between 9:00 am and 9:00 pm) after KRG administration. KRG (10 and 100 mg/kg) increased non-rapid eye movement (NREM) sleep as well as total sleep. The total percentages of wakefulness were decreased comparably. KRG (10 mg/kg) decreased the power density of the ${\delta}-wave$ (0.75-4.5 Hz) and increased ${\alpha}-wave$ (8.0-13.0 Hz) in the NREM and rapid eye movement (REM) sleep. KRG also decreased ${\delta}-wave$ power density in wake time. However, KRG (100 mg/kg) increased ${\delta}-wave$ and decreased ${\theta}-wave$ (5.0-9.0 Hz) power density in wake time, while showed little effect on the power density in NREM and REM sleep. In conclusion, low and high doses of KRG increase spontaneous sleep and NREM sleep and differently regulate the EEG spectra in REM and NREM sleep.

A PSpice Modeling of PFC Circuit Using Soft-Switched Boost Converter

  • Mok, H.S.;Choe, G.H.;Jeong, S.E.;Choi, J.Y.
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.393-399
    • /
    • 1997
  • Single-phase and three-phase AC to DC power converters are becoming frequently used for high voltage/high power applications such as telecommunications. They often require input/output transformer isolation for safety, a unity input power factor for minimum reactive power, free input harmonic currents fed back to the AC Power distribution system and, finally, high efficiency and high power density for minimum weight and volume. The proposed boost converter for power factor correction (PFC) provides an unity input power factor, low harmonic distortion and high efficiency along with reduced volume and weight. Single-phase 220VAC input/380VDC 1KW output prototype is constructed and experimental results will be verified with those of PSpice simulation.

  • PDF

Power Factor improvement of Power Conversion Equipment for High Pressure Sodium Lamps (고압 나트륨 램프 구동용 전력변환장치의 역률 개선)

  • Lee, S.H.;Suh, K.Y.;Lee, H.W.;Lee, S.H.;Mun, S.P.
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.147-150
    • /
    • 2002
  • HPSL(High Pressure Sodium lamp)have attracted much attention in recent years, because they offer high luminous efficiency and very long life. Recently, AC-DC converters have been widely as power factor improvement circuits in the power conversion equipment An application of the ZVT-PWM(Zero Voltage Transition Pulse Width Modulation) boost converter, which has great advantage on miniaturization and high power density, to the power factor improvement circuit of the HPSL inverter are described to identify the power factor correction characteristics of the inverter. In this paper the series-parallel resonant inverter(electronic ballast) for driving a HPS lamp is discussed. Finally, a power factor corrector is cascaded in front of the electronic ballast. Consequently, a high power factor above 0.99 and low THD on the line current can be achieved.

  • PDF

Effect of Particle Size of Cathode Materials on Discharge Properties of Thermal Batteries (양극 활물질의 입도에 따른 열전지 출력 특성 연구)

  • Lee, Jungmin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.399-406
    • /
    • 2014
  • Thermal batteries are used for military power sources that require robustness and long storage life such as missiles and torpedoes. $FeS_2$ powder is currently used for cathode materials because of its high specific energy density, environmental non-toxicity and low cost. However, large particle size of conventional $FeS_2$ has been deterred its possible application for higher power thermal batteries. In order to improve the power density, high energy ball milling of $FeS_2$ has been introduced to crush the micron-sized $FeS_2$. Discharge characteristics of the single cells fabricated with nano-materials and conventional $FeS_2$ powder were evaluated.

Thermal Analysis of Traction Motor in the High Speed Train with various Flow Rate (고속 전철용 매입형 영구자석 전동기의 풍량에 따른 열해석)

  • Lim, Jae-Won;Yi, Kyung-Pyo;Jung, Hyun-Kyo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.165-170
    • /
    • 2010
  • Recently, Interior Permanent Magnet Machine(IPM) is widely used for traction motor in the high speed train. Higher efficiency and power density are the superb performance of IPM. Due to the high power density, however, it has lots of heat source which are originated from copper losses and core losses. These heat source can cause the permanent demagnetization in magnet and the loss of torque and power. To prevent the undesirable loss in the traction motor, the accurate loss calculation and the thermal analysis should be preceded. Especially, the end-winding area and permanent magnet area should be examined correctly. In this paper, the electromagnetic fields were examined by finite element method to analyze the electromagnetic properties of IPM and thermal analysis are carried out with pre-calculated losses. To validate the analysis result, the experiment set with forced air cooling system is manufactured.

  • PDF

Design of PM Excited Transverse Flux Linear Motor of Inner Mover Type

  • Kang Do-Hyun;Ahn Jong-Bo;Kim Ji-Won;Chang Jung-Hwan;Jung Soo-Jin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.137-141
    • /
    • 2005
  • A transverse flux, PM-exited linear motor (TFM-LM) with inner mover was designed and built. Its output power density is higher and its weight is lower than those of the conventional PM exited linear synchronous motors (PM LSM). To obtain the maximum thrust force under the given volume, the thrust force density with respect to the ratio of the slot width and the length of pole pitch is analyzed by the 3-dimension finite element method (FEM). Finally, calculated static thrust forces was compared with the experimental values. The calculated and measured performance of the transverse flux, PM-exited linear motor with inner mover revealed great potential for system improvements by reducing the mass of the linear motor. For examples, when this motor was applied to a ropeless elevator, it was possible to increase the power density by more than 400% over the conventional PM-LSM. The results of this study recommend this type of motor for the ropeless elevator or gearless direct linear driving system.

Properties of Electron Temperature and Density in Inductively Coupled Plasma of Xenon (유도결합형 제논 플라즈마의 전자온도, 밀도 특성)

  • Her, In-Sung;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.41-45
    • /
    • 2005
  • In this paper, parameters of electron temperature and density for the mercury-free lighting-source were measured to diagnosis and analyze in Xe based inductively coupled plasma(ICP). In results at several dependences of 20~100 mTorr Xenon pressure, 50~200W RF power and horizontal distribution were especially mentioned. When Xe pressure was 20mTorr and RF power was 200W, the electron temperature and density were respectively 3.58eV and $3.56{\times}10^{12}cm^{-3}$. The key parameters of Xe based ICP depended on Xe pressure more than RF power that could be verified. A high electron temperature and low electron density with a suitable Xe pressure are indispensible parameters for Xe based ICP lighting-source.

  • PDF

Properties of Electron Temperature and Electron Density in Inductively Coupled Xenon Plasma (유도결합형 제논 플라즈마의 전자온도, 전자밀도 특성)

  • Her, In-Sung;Choi, Gi-Seung;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2418-2420
    • /
    • 2005
  • In this paper, parameters of electron temperature and density for the mercury-free lighting-source were measured to diagnosis and analyze in Xe based inductively coupled plasma(ICP). In results at several dependences of $20{\sim}100mTorr$ Xenon pressure, $50{\sim}200W$ RF power and horizontal distribution were especially mentioned. When Xe pressure was 20mTorr and RF power was 200W, the electron temperature and density were respectively 3.58eV and $3.56{\times}10^{12}cm^{-3}$. The key parameters of Xe based ICP depended on Xe pressure more than RF power that could be verified. A high electron temperature and low electron density with a suitable Xe pressure are indispensible parameters for Xe based ICP lighting-source.

  • PDF